Core Journal of China

DOAJ

Scopus

Chinese Scientific and Technical Papers and Citations (CSTPC)

Chinese Science Citation Database (CSCD)

Li-jun KUAI, Xiu-chun ZHAN, Xing-tao FAN, Hong-li WEN, Ji-hai YUAN. Determination of Cu, Pb and Zn in Sulfide Ores by Polarized Energy Dispersive X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6): 903-908.
Citation: Li-jun KUAI, Xiu-chun ZHAN, Xing-tao FAN, Hong-li WEN, Ji-hai YUAN. Determination of Cu, Pb and Zn in Sulfide Ores by Polarized Energy Dispersive X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6): 903-908.

Determination of Cu, Pb and Zn in Sulfide Ores by Polarized Energy Dispersive X-ray Fluorescence Spectrometry

  • The traditional sample preparation methods are pressed powder pellets and glass melting to determine major components for sulfide ores by X-ray Fluorescence Spectrometry. However, for high sulfur geological samples, the preparation method of pressed powder pellet has mineralogical effects and particle size effects, and the glass melting method has the disadvantage of being corrosive to precious metal crucibles. Development of a simple sample preparation method for principal components analysis is essential to meet the requirements for exploration of mineral deposits. In this paper a method is presented to determine Cu, Pb, Zn contained in sulfide ores. This method utilizes Polarized Energy Dispersive X-ray Fluorescence Spectrometry (PE-EDXRF) along with nitric acid and fluoric acid digestion, and is calibrated by standard solution. The accuracy and precision of the method were examined by analyzing reference materials GBW 07162 to GBW 07168. The test results indicate that the relative standard deviations (RSD, n=6) of the most elemental components are less than 5%, when the concentrations of copper, zinc and lead are more than 1%. The results are in good agreement with certified values of reference materials. The impact of matrix effects such as particle size effect and mineral effect on analytical elements has been eliminated by digestion sample and direct solution inlet. The problem of calibrating concentrations that were short of standard materials has been solved with the matrix matching. The technology of PE-EDXRF provides a new means of ore analysis in the laboratory and a new technical support for PE-EDXRF field analysis for high sulfide samples.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return