| Citation: | ZHAO Hongkun, LIU Yaxuan, MA Shengming, ZHANG Yanfei, ZHANG Pengpeng, LI Qiang, LI Zhenqing, CHEN Qishen, LI Yong, GU Xue, CHEN Hongqiang. Determination of Major Elements in Small-Weight Soil and Sediment Samples by X-Ray Fluorescence Spectrometry with Pressed-Powder Pellets[J]. Rock and Mineral Analysis, 2025, 44(2): 305-315. DOI: 10.15898/j.ykcs.202403040030 |
The analysis of small-weight samples utilizing X-ray fluorescence spectrometry (XRF) poses a pivotal technical challenge in determining the chemical composition of valuable and scarce materials. Furthermore, the application of XRF to verify the homogeneity of reference materials has sparked debates regarding the minimum sample weight. At present, most of the geological samples (including reference material) are at the particle size of 74μm (−200 mesh) and the conventional sample weight is approximately 4g for XRF analysis with pressed-powder pellets. Here, 0.1g weight soil or sediment was used for pressed-powder pellet preparation. The diameter of the XRF spectrometry sample box mask was changed to 12mm, and the diameter of the field view light barrier was reduced to 10mm. Based on the previously optimized instrumental measurement conditions, we successfully established a 0.1g sample weight analytical method for the quantification of ten major elements (SiO2, Al2O3, TFe2O3, MgO, Cao, Na2O, K2O, Mn, Ti, and P) utilizing wavelength dispersive XRF, which significantly reduced the necessary sample weight. This method employed a diverse range of 32 geochemical reference materials, encompassing various types and content gradients. The detection limit of the 0.1g sample weight analysis method was between 14μg/g and 0.35%, and the precision (RSD,