中文核心期刊

中国科技核心期刊

CSCD来源期刊

DOAJ 收录

Scopus 收录

刘高令,姜贞贞,刘高博,等. 西藏地区羊八井地热水中胶体粒子分析与表征[J]. 岩矿测试,2023,42(6):1156−1164. DOI: 10.15898/j.ykcs.202303130034
引用本文: 刘高令,姜贞贞,刘高博,等. 西藏地区羊八井地热水中胶体粒子分析与表征[J]. 岩矿测试,2023,42(6):1156−1164. DOI: 10.15898/j.ykcs.202303130034
LIU Gaoling,JIANG Zhenzhen,LIU Gaobo,et al. Analysis and Characterization of Colloidal Particles in Yangbajing Geothermal Water, Tibet[J]. Rock and Mineral Analysis,2023,42(6):1156−1164. DOI: 10.15898/j.ykcs.202303130034
Citation: LIU Gaoling,JIANG Zhenzhen,LIU Gaobo,et al. Analysis and Characterization of Colloidal Particles in Yangbajing Geothermal Water, Tibet[J]. Rock and Mineral Analysis,2023,42(6):1156−1164. DOI: 10.15898/j.ykcs.202303130034

西藏地区羊八井地热水中胶体粒子分析与表征

Analysis and Characterization of Colloidal Particles in Yangbajing Geothermal Water, Tibet

  • 摘要: 地热水的水化学特征包含其形成过程中地质、构造、断裂、蚀变以及环境变化等多种信息。西藏地区地热资源丰富,部分地热水中含有胶体粒子,开展胶体粒子的形貌、成分、结构等物理化学信息研究,对于了解地热流体的物质来源与胶体粒子关系具有重要意义。胶体粒子的生成与沉淀过程影响着地热水的浊度、电导率、部分阳离子的含量。本文对羊八井地热水中胶体粒子进行一系列分析,采用激光粒度仪测定地热水中胶体粒子的粒径,透射电镜(TEM)和扫描电镜(SEM)表征胶体粒子的形貌,红外光谱(FTIR)测定胶体粒子的特征谱峰,能谱仪(EDS)分析胶体粒子的主要成分,电感耦合等离子体发射光谱(ICP-OES)测定地热水中二氧化硅(SiO2)含量。结果表明:地热水中高含量的SiO2除了以偏硅酸形式存在,还以胶体粒子的形式存在。胶体粒子的平均粒径为80.83nm,该胶体粒子与铯硅华的形成及轻稀土元素的富集有关。此外,该胶体粒子可以用ICP-OES法分析,但不与钼酸铵显色,从而导致采用紫外可见分光光度法(UV-Vis)和ICP-OES测定该类型水体中偏硅酸(H2SiO3)与SiO2结果相差较大,因此对于SiO2含量高于100mg/L的地热水,采用ICP-OES法检测更为准确。

     

    Abstract:
    BACKGROUND The hydrochemical characteristics of geothermal water include various information such as geological, structural, fracture, alteration, and environmental changes during its formation. It is particularly important to analyse various components in geothermal water accurately.  Tibet is rich in geothermal resources, and some geothermal water contains colloidal particles. It is of great significance to study the morphology, composition and structure of colloidal particles for understanding the relationship between the material sources of geothermal fluids and colloidal particles. The generation and precipitation of colloidal particles can affect the turbidity, conductivity, and partial cation content of geothermal water. It is not easy to obtain naturally formed colloidal particles in geothermal water, so there are few reports on the analysis of colloidal particles in geothermal water.
    OBJECTIVES To analyze colloidal particles in geothermal water accurately by multiple methods, and understand the relationship between colloidal particles and opals, and the impact of colloidal particles on the analysis of other elements in geothermal water.
    METHODS By comparing the changes in the main components of the water samples before and after filtration, the composition of colloidal particles was inferred. The composition and structure of colloidal particles in the filtrate were characterized by scanning electron microscopy (SEM) and other instruments. The particle size of colloidal particles in geothermal water was measured by laser particle size analyzer, the morphology of colloidal particles was characterized by transmission electron microscope (TEM) and SEM, the characteristic spectrum peak of colloidal particles was measured by Fourier transform infrared spectroscopy (FTIR), the main composition of colloidal particles was analyzed by energy dispersive spectrometer (EDS), and the content of silicon in geothermal water was determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) and ultraviolet-visible spectrophotometry (UV-Vis).
    RESULTS The colloidal particles in geothermal water are colloidal silica particles. High levels of silica in geothermal water are present in the form of soluble silicic acid and colloidal particles. The average particle size of the colloidal particles is 80.83nm, which is related to the formation of cesium silica and the enrichment of light rare earth elements. The colloidal particle can be analyzed by ICP-OES method, but cannot show color with ammonium molybdate, resulting in a significant difference in the results of using UV-Vis and ICP-OES to determine silicon in this type of water. ICP-OES is a more suitable detection method for geothermal water with high silicon dioxide content. Silicon dioxide can be directly measured whether it exists in the form of metasilicic acid or colloidal particles.
    CONCLUSIONS The research shows that the presence of colloidal particles increases the turbidity, but not the conductivity, of geothermal water. The results show that the high content of SiO2 in geothermal water co-exists in the form of metasilicate and colloidal particles, which can be analyzed by ICP-OES but cannot show color with ammonium molybdate. The content of SiO2 colloidal particles in geothermal water can be obtained by calculating the difference between SiO2 measured by ICP-OES and H2SiO3 measured by UV-Vis. SiO2 colloidal particles are relatively stable and not easy to precipitate. SiO2 colloidal particles will adsorb metal ions in geothermal water during the filtration process.

     

/

返回文章
返回