【引用本文】 杨秀清, 李厚民, 李立兴, 等. 辽宁弓长岭铁矿床磁铁矿稀土元素特征及其地质意义[J]. 岩矿测试, 2012, 31(6): 1058-1066.
 ,  ,  , et al. Characteristics of Rare Earth Elements and the Geological Significance of Magnetite from Gongchangling Iron Deposit in Liaoning Province[J]. Rock and Mineral Analysis, 2012, 31(6): 1058-1066.

辽宁弓长岭铁矿床磁铁矿稀土元素特征及其地质意义

1. 

国土资源部成矿作用与资源评价重点实验室, 中国地质科学院矿产资源研究所, 北京 100037

2. 

地质过程与矿产资源国家重点实验室, 中国地质大学(北京)地球科学与资源学院, 北京 100083

3. 

国土资源部成矿作用与资源评价重点实验室, 中国地质科学院矿产资源研究所, 北京 100037

4. 

国土资源部成矿作用与资源评价重点实验室, 中国地质科学院矿产资源研究所, 北京 100037

5. 

国土资源部成矿作用与资源评价重点实验室, 中国地质科学院矿产资源研究所, 北京 100037

6. 

地质过程与矿产资源国家重点实验室, 中国地质大学(北京)地球科学与资源学院, 北京 100083

7. 

国土资源部成矿作用与资源评价重点实验室, 中国地质科学院矿产资源研究所, 北京 100037

8. 

辽宁省冶金地质勘查局401队, 辽宁 鞍山 114005

收稿日期: 2012-02-21  修回日期: 2012-09-20 

基金项目: 我国典型金属矿科学基地研究项目(20091107) 国土资源部公益性行业专项经费项目(201111002) 中国地质大调查项目(1212011120988)

Characteristics of Rare Earth Elements and the Geological Significance of Magnetite from Gongchangling Iron Deposit in Liaoning Province

1. 

Key Laboratory of Metallogeny and Mineral Assessment, Ministry of Land and Resources, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

2. 

State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth Science and Resource, China University of Geosciences (Beijing), Beijing 100083, China

3. 

Key Laboratory of Metallogeny and Mineral Assessment, Ministry of Land and Resources, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

4. 

Key Laboratory of Metallogeny and Mineral Assessment, Ministry of Land and Resources, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

5. 

Key Laboratory of Metallogeny and Mineral Assessment, Ministry of Land and Resources, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

6. 

State Key Laboratory of Geological Processes and Mineral Resources, Faculty of Earth Science and Resource, China University of Geosciences (Beijing), Beijing 100083, China

7. 

Key Laboratory of Metallogeny and Mineral Assessment, Ministry of Land and Resources, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

8. 

Liaoning Metallurgical Geological Exploration Bureau 401 Branch, Anshan 114005, China

Received Date: 2012-02-21
Revised Date: 2012-09-20

摘要:辽宁弓长岭铁矿床是我国著名的沉积变质型铁矿床,其二矿区的磁铁富矿达大型规模,属国内之最。为探讨弓长岭铁矿床铁矿的物质来源、形成环境和富矿成因,本文以二矿区六个铁矿体的贫铁矿石和富铁矿石中磁铁矿单矿物为研究对象,利用电感耦合等离子体质谱进行了系统的稀土元素测试。结果表明,所有样品中磁铁矿的稀土元素总量(∑REEs)和Y具有非常一致的特征:稀土元素总量较低,Y/Ho比值较高; 经太古界后平均澳大利亚页岩(PAAS)标准化呈现重稀土相对富集、轻稀土相对亏损的分馏模式,大部分呈现La正异常,所有样品都有明显的Eu和Y正异常,这些特征表明研究区的磁铁矿成矿物质主要来源于海底高温热液和海水; 虽然磁铁矿的Ce/Ce*为0.69~0.97,但大多数样品缺乏真正意义的Ce负异常,这暗示其沉积于还原的海水环境; 富铁矿石磁铁矿的稀土元素总量和Eu含量明显高于贫铁矿石的磁铁矿,而且含富矿的上含铁带Eu异常明显较高,表明富铁矿石磁铁矿具有更明显的热液特征,是在贫铁矿石的基础上受热液活动形成的。

关键词: 磁铁矿, 稀土元素, 电感耦合等离子体质谱法, 沉积变质型铁矿, 弓长岭

Characteristics of Rare Earth Elements and the Geological Significance of Magnetite from Gongchangling Iron Deposit in Liaoning Province

KEY WORDS: magnetite, rare, earth, elements, Inductively

本文参考文献

[1]

李绍柄.我国铁矿床的一种新类型——弓长岭式含石墨的富磁铁矿矿床及其成因 [J].地球化学,1979(2): 170-177.

[2]

施继锡,李本超.根据鞍本地区包裹体研究试论弓长岭磁铁富矿的成因 [J].地球化学,1980(1): 43-53.

[3]

李曙光弓长岭富磁铁矿床成因的地球化学模型[J].地球化学,1982(2): 113-121.

[4]

李曙光,支霞臣,陈江峰,王俊新,邓衍尧.鞍山前寒武纪条带状含铁建造中石墨的成因[J].地球化学,1983(2): 162-169.

[5]

陈光远,黎美华,汪雪芳,孙岱生,孙传敏,王祖福,速玉萱,林家湘.弓长岭铁矿成因矿物学专辑 [J].矿物岩石,1984(2): 14-41.

[6]

万渝生.辽宁弓长岭含铁岩系的形成与演化[M].北京:北京科学技术出版社,1993: 1-88.

[7]

郑柱,蓝海洋.弓长岭富铁矿床地质特征及成因探讨 [J].现代矿业,2009,4(4): 67-70.

[8]

刘军,靳淑韵.辽宁弓长岭铁矿磁铁富矿的成因研究 [J].现代地质,2010,24(1): 80-88.

[9]

万渝生,杨瑞英,屈丰亮.辽宁弓长岭条带状铁矿石及有关矿物的稀土地球化学研究 [J].中国地质科学院地质研究所所刊,1992,25: 103-113.

[10]

周世泰.鞍山—本溪地区条带状铁矿地质[M].北京:地质出版社,1994: 1-276.

[11]

辽宁省冶金地质勘查局地质勘查研究院.辽宁省辽阳市弓长岭铁矿富铁矿成因及成矿模式研究报告. 鞍山: 鞍钢集团矿业公司弓长岭矿业公司,2008.

[12]

辽宁省冶金地质勘查局地质勘查研究院.辽宁省辽阳市弓长岭铁矿接替资源勘查报告.鞍山: 鞍钢集团矿业公司弓长岭矿业公司,2008.

[13]

程浴淇.中国东北部辽宁山东等省前寒武纪鞍山式条带状铁矿中富矿成因问题 [J].地质学报,1957,37(2): 153-180.

[14]

李延河,张增杰,伍家善,尚龙平.冀东马兰庄条带状硅铁建造的变质时代及地质意义 [J].矿床地质,2011,30(4): 645-653.

[15]

翟明国,Sills J D,Windley B F.鞍本地区鞍山群变质矿物及变质作用 [J].岩石矿物学杂志,1990,9(2): 148-158.

[16]

李厚民,王瑞江,肖克炎,刘亚玲,李立兴.立足国内保障国家铁矿资源需求的可行性分析 [J].地质通报,2010,29(1): 1-7.

[17]

李志红,朱祥坤,唐索寒.鞍山―本溪地区条带状铁建造的铁同位素与稀土元素特征及其对成矿物质来源的指示 [J].岩石矿物学杂志,2008,27(4): 285-290.

[18]

丁文君,陈正乐,陈柏林,董法先,崔玲玲.河北迁安杏山铁矿床地球化学特征及其对成矿物质来源的指示 [J].地质力学学报,2009,15(4): 363-373.

[19]

李志红,朱祥坤,唐索寒,李津,刘辉.冀东、五台和吕梁地区条带状铁矿的稀土元素特征及其地质意义 [J].现代地质,2010,24(5): 840-846.

[20]

Klein C. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin [J].American Mineralogist,2005,90: 1473-1499.

Klein C. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin [J].American Mineralogist,2005,90: 1473-1499.

[21]

Dssing L R, Frei R, Stendal H, Mapeo R B M. Charac-terization of enriched lithospheric mantle components in 2.7Ga Banded Iron Formations: An example from the Tati Greenstone Belt, Northeastern Botswana [J].Precambrian Research,2009,172: 334-356.

Dssing L R, Frei R, Stendal H, Mapeo R B M. Charac-terization of enriched lithospheric mantle components in 2.7Ga Banded Iron Formations: An example from the Tati Greenstone Belt, Northeastern Botswana [J].Precambrian Research,2009,172: 334-356.

[22]

Frei R, Polat A. Source heterogeneity for the major compo-nents of 3.7Ga banded iron formations (Isua Greenstone Belt, Western Greenland): Tracing the nature of interacting water masses in BIF formation [J].Earth and Planetary Science Letters,2007,253: 263-281.

Frei R, Polat A. Source heterogeneity for the major compo-nents of 3.7Ga banded iron formations (Isua Greenstone Belt, Western Greenland): Tracing the nature of interacting water masses in BIF formation [J].Earth and Planetary Science Letters,2007,253: 263-281.

[23]

Zhang X J, Zhang L C, Xiang P, Wan B, Pirajno F. Zircon U-Pb age, Hf isotopes and geochemistry of Shuichang Algoma-type banded iron-formation, North China Craton: Constraints on the ore-forming age and tectonic setting [J].Gondwana Research,2011,GR-00610: 1-12.

Zhang X J, Zhang L C, Xiang P, Wan B, Pirajno F. Zircon U-Pb age, Hf isotopes and geochemistry of Shuichang Algoma-type banded iron-formation, North China Craton: Constraints on the ore-forming age and tectonic setting [J].Gondwana Research,2011,GR-00610: 1-12.

[24]

McLennan S M. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes [J].Reviews in Mineralogy and Geochemistry,1989,21: 169-200.

McLennan S M. Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes [J].Reviews in Mineralogy and Geochemistry,1989,21: 169-200.

[25]

Elderfield H, Sholkovitz E R. Rare earth elements in the pore waters of reducing near shore sediments [J].Earth and Planetary Science Letters,1987,82: 280-288.

Elderfield H, Sholkovitz E R. Rare earth elements in the pore waters of reducing near shore sediments [J].Earth and Planetary Science Letters,1987,82: 280-288.

[26]

陈德潜,陈刚.实用元素稀土化学[M].北京: 冶金工业出版社,1990: 152-158.

[27]

翟明国,Windley B F, Sill J D.鞍本太古代条带状铁建造(BIF)的稀土及微量元素特征 [J].地球化学,1989(3): 241-250.

[28]

Nozaki Y, Zhang J, Amakawa H. The fractionation between Y and Ho in the marine environment [J].Earth and Planetary Science Letters,1997,148: 329-340.

Nozaki Y, Zhang J, Amakawa H. The fractionation between Y and Ho in the marine environment [J].Earth and Planetary Science Letters,1997,148: 329-340.

[29]

Lawrence M G, Greig A, Collerson K D, Kamber B S. Direct quantification of rare earth element concentrations in natural waters by ICP-MS [J].Applied Geochemistry,2006,21: 839-848.

Lawrence M G, Greig A, Collerson K D, Kamber B S. Direct quantification of rare earth element concentrations in natural waters by ICP-MS [J].Applied Geochemistry,2006,21: 839-848.

[30]

Bau M, Dulski P. Distribution of yttrium and rare earth elements in the Penge and Kuruman iron-formation, Transvaal Supergroup, South Africa [J].Precambrian Research,1996,79: 37-55.

Bau M, Dulski P. Distribution of yttrium and rare earth elements in the Penge and Kuruman iron-formation, Transvaal Supergroup, South Africa [J].Precambrian Research,1996,79: 37-55.

[31]

Bolhar R, Kranendonl K J V, Kamber B S.A trace element study of sideritejasper banded iron-formation in the 3.45 Ga Warrawoona Group, Pilbara Craton formation from hydrothermal fluids and shallow seawater [J]. Precambrian Research, 2005,137: 93-114.

Bolhar R, Kranendonl K J V, Kamber B S.A trace element study of sideritejasper banded iron-formation in the 3.45 Ga Warrawoona Group, Pilbara Craton formation from hydrothermal fluids and shallow seawater [J]. Precambrian Research, 2005,137: 93-114.

[32]

German C R, Klinkhammer G P, Edmond J M, Mura A, Elderfield H. Hydrothermal scavenging of rare earth elements in the ocean [J].Nature,1990,345: 516-518.

German C R, Klinkhammer G P, Edmond J M, Mura A, Elderfield H. Hydrothermal scavenging of rare earth elements in the ocean [J].Nature,1990,345: 516-518.

[33]

German C R, Hergt J, Palmer M R, Edmond J M. Geochemistry of a hydrothermal sediment core from the OBS vent-field, 21°N East Pacific Rise [J].Chemical Geology,1999,155: 65-75.

German C R, Hergt J, Palmer M R, Edmond J M. Geochemistry of a hydrothermal sediment core from the OBS vent-field, 21°N East Pacific Rise [J].Chemical Geology,1999,155: 65-75.

[34]

Michard A, Albarède F.The REE contents of some hydrothermal fluids [J].Chemical Geology,1986,55: 51-60.

Michard A, Albarède F.The REE contents of some hydrothermal fluids [J].Chemical Geology,1986,55: 51-60.

[35]

Douville E, Bienvenu P, Charlou J L, Donval J P, Fouquet Y, Appriou P, Gamo T. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems [J].Geochimica et Cosmochimi Acta,1999,63(5): 627-643.

Douville E, Bienvenu P, Charlou J L, Donval J P, Fouquet Y, Appriou P, Gamo T. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems [J].Geochimica et Cosmochimi Acta,1999,63(5): 627-643.

[36]

Huston D L, Logan G A. Barite BIFs and bugs: Evidence for the evolution of the Earths early hydrosphere [J].Earth and Planetary Science Letters,2004,220: 41-55.

Huston D L, Logan G A. Barite BIFs and bugs: Evidence for the evolution of the Earths early hydrosphere [J].Earth and Planetary Science Letters,2004,220: 41-55.

[37]

蒋少涌,丁悌平,万德芳,李延河.辽宁弓长岭太古代条带状硅铁建造(BIF)的硅同位素组成特征 [J].中国科学: B辑,1992(6): 626-631.

[38]

侯可军.辽宁鞍本地区条带状硅铁建造的形成与地球早期大气和硫循环.北京: 中国地质科学院,2007: 1-53.

[39]

Heimann A, Johnson C M, Beard B L, Valley J W, Roden E E, Spicuzza M J, Beukes N J. Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5Ga marine environments [J].Earth and Planetary Science Letters,2010,294: 8-18.

Heimann A, Johnson C M, Beard B L, Valley J W, Roden E E, Spicuzza M J, Beukes N J. Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5Ga marine environments [J].Earth and Planetary Science Letters,2010,294: 8-18.

[40]

Bau M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the signifi-cance of the oxidation state of europium [J].Chemical Geology,1991,93: 219-230.

Bau M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the signifi-cance of the oxidation state of europium [J].Chemical Geology,1991,93: 219-230.

[41]

Machard A, Machard G, Stoffers S D, Cheminée J L. Submarine thermal springs associated with young volcanoes: The Teahitia Vents, Society Islands, Pacific Ocean [J].Geochimica et Cosmochimica Acta,1993,57: 4977-4986.

Machard A, Machard G, Stoffers S D, Cheminée J L. Submarine thermal springs associated with young volcanoes: The Teahitia Vents, Society Islands, Pacific Ocean [J].Geochimica et Cosmochimica Acta,1993,57: 4977-4986.

[42]

Bau M, Dulski P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near vent mixing and for the Y/Ho ratio of Proterozoic seawater [J].Chemical Geology, 1999, 155(1/2): 77-90.

Bau M, Dulski P. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near vent mixing and for the Y/Ho ratio of Proterozoic seawater [J].Chemical Geology, 1999, 155(1/2): 77-90.

[43]

魏菊英.铁矿床同位素地球化学[M]//于津生,李耀菘.中国同位素地球化学研究.北京:科技出版社,1997: 344-375.

[44]

Dymek R F, Klein C. Chemistry, petrology, and origin of banded iron-formation lithologies from the 3800Ma Isua Supracrustal Belt, West Greenland [J].Precambrian Research,1988,39: 247-302.

Dymek R F, Klein C. Chemistry, petrology, and origin of banded iron-formation lithologies from the 3800Ma Isua Supracrustal Belt, West Greenland [J].Precambrian Research,1988,39: 247-302.

[45]

Fryer B J. Rare earth evidence in iron formations for changing Precambrian oxidation states [J].Geochimica et Cosmochimica Acta,1977,41: 361-367.

Fryer B J. Rare earth evidence in iron formations for changing Precambrian oxidation states [J].Geochimica et Cosmochimica Acta,1977,41: 361-367.

[46]

Kamber B S, Webb G E. The geochemistry of the late Archaean microbial carbonate: Implication for ocean chemistry and continental erosion history [J].Geochimica et Cosmochimica Acta,2001,64: 2509-2525.

Kamber B S, Webb G E. The geochemistry of the late Archaean microbial carbonate: Implication for ocean chemistry and continental erosion history [J].Geochimica et Cosmochimica Acta,2001,64: 2509-2525.

[47]

Raju P V S. Petrography and geochemical behaviour of trace element, REE and precious metal signatures of sulphidic banded iron formations from the Chikkasiddavanahalli area, Chitradurga schist belt, India [J].Journal of Asian Earth Sciences,2009,34: 663-673.

Raju P V S. Petrography and geochemical behaviour of trace element, REE and precious metal signatures of sulphidic banded iron formations from the Chikkasiddavanahalli area, Chitradurga schist belt, India [J].Journal of Asian Earth Sciences,2009,34: 663-673.

[48]

Planavsky N, Bekker A, Rouxel O J, Kamber B, Hofmann A, Knudsen A, Lyons T W. Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition [J]. Geochimica et Cosmochimica Acta,2010,74: 6387-6405.

Planavsky N, Bekker A, Rouxel O J, Kamber B, Hofmann A, Knudsen A, Lyons T W. Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition [J]. Geochimica et Cosmochimica Acta,2010,74: 6387-6405.

[49]

Bekker A, Slack J F, Plnavsky N, Hofmann K A, Konhauser K O, Rouxel O J. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes [J].Economic Geologist,2010,105: 467-508.

Bekker A, Slack J F, Plnavsky N, Hofmann K A, Konhauser K O, Rouxel O J. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes [J].Economic Geologist,2010,105: 467-508.

[50]

赵振华.条带状铁建造(BIFs)与地球大氧化事件 [J].地学前缘,2010,12(2): 1-12.

[51]

侯可军,李延河,万德芳.鞍山-本溪地区条带状硅铁建造的硫同位素非质量分馏对太古代大气氧水平和硫循环的制约 [J].中国科学:地球科学,2007,37(8): 997-1003.

[52]

Drever J I.Geochemical model for the origin of Precambrian banded iron formations [J].Geological Society of America Bulletin,1974,85: 1099-1106.

Drever J I.Geochemical model for the origin of Precambrian banded iron formations [J].Geological Society of America Bulletin,1974,85: 1099-1106.

[53]

Spier C A, Oliveira S M B, Rosière C A. Geology and geochemistry of the Águas Claras and Pico Iron Mines,Quadrilátero Ferrífero, Minas Gerais, Brazil [J].Mineralium Deposita,2003,38: 751-774.

Spier C A, Oliveira S M B, Rosière C A. Geology and geochemistry of the Águas Claras and Pico Iron Mines,Quadrilátero Ferrífero, Minas Gerais, Brazil [J].Mineralium Deposita,2003,38: 751-774.

[54]

Beukes N J, Mukhopadhyay J, Gutzmer J. Genesis of high-grade iron ores of the Archean iron ore group around Noamundi, India [J].Economic Geology,2008,103: 365-386.

Beukes N J, Mukhopadhyay J, Gutzmer J. Genesis of high-grade iron ores of the Archean iron ore group around Noamundi, India [J].Economic Geology,2008,103: 365-386.

[55]

Thorne W, Hagemann S, Vennemann T, Oliver N. Oxygen isotope compositions of iron oxides from high-grade BIF-hosted iron ore deposits of the Central Hamersley Province, western Australia: Constraints on the evolution of hydrothermal fluid [J].Economic Geology,2009,104: 1019-1035.

Thorne W, Hagemann S, Vennemann T, Oliver N. Oxygen isotope compositions of iron oxides from high-grade BIF-hosted iron ore deposits of the Central Hamersley Province, western Australia: Constraints on the evolution of hydrothermal fluid [J].Economic Geology,2009,104: 1019-1035.

引证文献(本文共被引用20次)

[1]

Formation age and genesis of the banded iron formations from the Guyang Greenstone Belt,Western North China Craton[A]. Li Liu,Lianchang Zhang,Yanpei Dai.中国科学院地质与地球物理研究所2014年度(第14届)学术年会论文汇编——固体矿产资源研究室[C]. 2015

[2]

辽宁鞍山—本溪变质岩区铁成矿过程研究[D]. 杨秀清.中国地质大学(北京) 2013

[3]

辽宁本溪地区铁矿三维地质建模[D]. 王文琦.吉林大学 2015

[4]

冀东柞栏杖子BIF地球化学特征、形成时代及其地质意义[J]. 陈靖,李厚民,罗迪柯,李立兴,杨秀清,刘明军,姚通,胡彬.  地质通报. 2015(05)

[5]

陆相火山岩型铁矿床矿石组构学特征及其成因意义[D]. 江满容.中国地质大学 2014

[6]

弓长岭铁矿二矿区蚀变岩中锆石SHRIMP U-Pb年龄及地质意义[J]. 李厚民,刘明军,李立兴,杨秀清,姚良德,陈靖,姚通.  岩石学报. 2014(05)

[7]

辽冀地区条带状铁建造地球化学特征:Ⅱ.稀土元素特征[J]. 姚通,李厚民,杨秀清,李立兴,陈靖,张进友,刘明军.  岩石学报. 2014(05)

[8]

Analysis of ultra-low level rare earth elements in magnetite samples from banded iron formations using HR-ICP-MS after chemical separation[A]. Wenjun Li,Xindi Jin,Bingyu Gao,Changle Wang,Lianchang Zhang.中国科学院地质与地球物理研究所2014年度(第14届)学术年会论文汇编——科技支撑系统[C]. 2015

[9]

Major Advances in the Study of the Precambrian Geology and Metallogenesis of the North China Craton:A Review[J]. ZHAO Lei,ZHU Xiyan,ZHAI Mingguo.  Acta Geologica Sinica(English Edition). 2016(04)

[10]

秦皇岛北吴庄磁铁矿的特征及地质意义[J]. 江林波,李珍,江林林,江林强.  东华理工大学学报(自然科学版). 2013(S1)

[11]

华北克拉通条带状铁建造中富铁矿成因类型的研究进展、远景和存在的科学问题[J]. 沈其韩,宋会侠.  岩石学报. 2015(10)

[12]

辽宁省弓长岭铁矿磁铁矿—赤铁矿转变机制研究[D]. 付玲芝.吉林大学 2016

[13]

黔东南从江九星铁金矿床磁铁矿地球化学特征及其地质意义[J]. 刘永坤,张均,刘安璐,申浩原,仲文斌,陈葛成.  矿物学报. 2015(04)

[14]

河南窑场和辽宁思山岭铁矿磁铁矿矿物学和氧同位素特征对比——对BIF型铁矿成因与形成环境的启示[J]. 孟旭阳,张东阳,闫兴虎,申俊峰,王鹏,田磊,梁明娟.  岩石矿物学杂志. 2014(01)

[15]

Formation age and genesis of the Gongchangling Neoarchean banded iron deposit in eastern Liaoning Province: Constraints from geochemistry and SHRIMP zircon U–Pb dating[A]. Chunming Han,Wenjiao Xiao,Ben-Xun Su,Patrick Asamoah Sakyi,Zhengle Chen,Xiaohui Zhang,Songjian Ao,Jien Zhang,Bo Wan,Zhiyong Zhang,Zhongmei Wang,Jiaxin Ding.中国科学院地质与地球物理研究所2014年度(第14届)学术年会论文汇编——特提斯研究中心[C]. 2015

[16]

辽宁歪头山铁矿床两类矿石地球化学特征及其对成矿作用的制约[J]. 杨秀清,李厚民,薛春纪,李立兴,刘明军,陈靖.  地质学报. 2013(10)

[17]

辽冀地区条带状铁建造地球化学特征:Ⅰ.主量元素特征[J]. 杨秀清,李厚民,李立兴,姚通,陈靖,刘明军.  岩石学报. 2014(05)

[18]

滇西芦子园铅锌矿床蔷薇辉石的成因及地质意义[D]. 王朋.昆明理工大学 2016

[19]

冀东司家营铁矿床地质地球化学特征与成矿作用[D]. 陈靖.中国地质科学院 2014

[20]

我国不同类型条带状硅铁建造形成机制的铁硅氧硫同位素地球化学制约[D]. 侯可军.中国地质大学(北京) 2014

相似文献(共19条)

[1]

刘明军, 李厚民, 李立兴, 杨秀清, 姚良德, 洪学宽, 陈靖. 辽宁弓长岭铁矿床二矿区类矽卡岩的岩石矿物学特征. 岩矿测试, 2012, 31(6): 1067-1076.

[2]

陈贺海, 荣德福, 付冉冉, 余清, 廖海平, 任春生, 鲍惠君. 微波消解-电感耦合等离子体质谱法测定铁矿石中15个稀土元素. 岩矿测试, 2013, 32(5): 702-708.

[3]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[4]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[5]

张德贤. 磁铁矿中微量元素的激光剥蚀-电感耦合等离子体质谱分析方法探讨. 岩矿测试, 2012, 31(1): 120-126.

[6]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[7]

孟郁苗, 黄小文, 高剑峰, 戴智慧, 漆亮. 无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成. 岩矿测试, 2016, 35(6): 585-594. doi: 10.15898/j.cnki.11-2131/td.2016.06.004

[8]

陈永欣, 黎香荣, 韦新红, 吕泽娥, 谢毓群, 蔡维专. 微波消解-电感耦合等离子体质谱法测定土壤和沉积物中痕量稀土元素. 岩矿测试, 2011, 30(5): 560-565.

[9]

高晶晶, 刘季花, 张辉, 白亚之, 崔菁菁, 何连花. 高压密闭消解-电感耦合等离子体质谱法测定海洋沉积物中稀土元素. 岩矿测试, 2012, 31(3): 425-429.

[10]

石天平, 张应娥. 磁铁矿简易检测装置的应用. 岩矿测试, 2003, (1): 77-78.

[11]

张茜, 余谦, 王剑, 肖渊甫, 程锦翔, 赵安坤, 张彬. 应用ICP-MS研究川西南龙马溪组泥页岩稀土元素特征及沉积环境. 岩矿测试, 2018, 37(2): 217-224. doi: 10.15898/j.cnki.11-2131/td.201705090078

[12]

李志伟, 邰自安, 任文岩, 高志军, 李艳华. 微波消解电感耦合等离子体质谱法测定黑色页岩中稀有稀土元素. 岩矿测试, 2010, 29(3): 259-262.

[13]

吴磊, 曾江萍, 刘义博, 吴良英, 张莉娟, 郝爽, 王家松. 硼酸溶液敞口酸溶-电感耦合等离子体质谱法测定萤石中稀土元素. 岩矿测试, 2014, 33(1): 20-24.

[14]

黎卫亮, 程秀花, 李忠煜, 王鹏. 碱熔共沉淀-电感耦合等离子体质谱法测定橄榄岩中的稀土元素. 岩矿测试, 2017, 36(5): 468-473. doi: 10.15898/j.cnki.11-2131/td.201607130099

[15]

赵素利, 张欣, 李曼, 温宏利, 屈文俊, 曹亚萍, 李超. 锍镍试金-电感耦合等离子体质谱法测定硫铁矿中铂族元素. 岩矿测试, 2011, 30(4): 412-415.

[16]

班俊生, 任金鑫, 刘桂珍, 臧苗苗, 杨莹雪, 王烨. 磁铁矿中磁性物成分的测定及可选性评价. 岩矿测试, 2013, 32(3): 469-473.

[17]

熊采华, 储溱, 赵志飞, 熊玉祥, 柳建一. 硝酸-氢氟酸酸溶电感耦合等离子体质谱法测定黑钨矿单矿物中稀土元素. 岩矿测试, 2012, 31(4): 602-606.

[18]

郭振华, 何汉江, 田凤英. 混合酸分解-电感耦合等离子体质谱法测定磷矿石中15种稀土元素. 岩矿测试, 2014, 33(1): 25-28.

[19]

陈贺海, 鲍惠君, 付冉冉, 应海松, 芦春梅, 金献忠, 肖达辉. 微波消解-电感耦合等离子体质谱法测定铁矿石中铬砷镉汞铅. 岩矿测试, 2012, 31(2): 234-240.

计量
  • PDF下载量(5743)
  • 文章访问量(2457)
  • 被引次数(20)
目录

Figures And Tables

辽宁弓长岭铁矿床磁铁矿稀土元素特征及其地质意义

杨秀清, 李厚民, 李立兴, 刘明军, 陈靖, 白云