【引用本文】 黄国鑫, 高云鹤, Howard Fallowfield, 等. 联合脱氮法用于硝酸盐污染地下水修复的机理研究[J]. 岩矿测试, 2012, 31(5): 855-862.
 ,  ,  , et al. Mechanism Study on a Combined Denitrification Approach for Nitrate-Contaminated Groundwater Remediation[J]. Rock and Mineral Analysis, 2012, 31(5): 855-862.

联合脱氮法用于硝酸盐污染地下水修复的机理研究

1. 

中国肉类食品综合研究中心, 北京 100068

2. 

沈阳水务集团, 辽宁 沈阳 110003

3. 

School of the Environment, Flinders University, Sturt Road, Bedford Park, SA 5001, Australia

4. 

School of the Environment, Flinders University, Sturt Road, Bedford Park, SA 5001, Australia

5. 

中国地质大学(北京)水资源与环境工程北京市重点实验室, 北京 100083

收稿日期: 2012-03-01 

基金项目: 中央高校基本科研业务费专项资金(2010ZD13)国家水体污染控制与治理重大专项(2008ZX07424-002-002)

Mechanism Study on a Combined Denitrification Approach for Nitrate-Contaminated Groundwater Remediation

1. 

China Meat Research Center, Beijing 100068, China

2. 

Shenyang Water Group Co., Shenyang 110003, China

3. 

School of the Environment, Flinders University, Sturt Road, Bedford Park, SA 5001, Australia

4. 

School of the Environment, Flinders University, Sturt Road, Bedford Park, SA 5001, Australia

5. 

Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences(Beijing), Beijing 100083, China

Received Date: 2012-03-01

摘要:地下水硝酸盐已经成为了世界性环境和健康问题。目前针对硝酸盐的化学还原脱氮、自养脱氮、异养脱氮等单一脱氮方法研究较多;联合脱氮体系包括化学还原、自养脱氮和异养脱氮三种脱氮途径,综合了单一脱氮法的优点,但研究甚少。本研究通过静态批试验,采用零价铁、甲醇和混合菌液研究了联合脱氮法的脱氮能力、脱氮产物、脱氮途径及脱氮机理。结果表明,5 d后单一的零价铁化学还原、自养脱氮和异养脱氮的去除率分别为5.79%、14.30%和63.03%;而联合脱氮的去除率接近100%,去除效果显著优于单一的化学还原脱氮、自养脱氮或异养脱氮。在联合脱氮法体系中,零价铁化学还原、自养脱氮未引起亚硝酸盐积累,而异养脱氮造成了亚硝酸盐积累;化学还原、自养脱氮和异养脱氮引起的铵盐增量均<0.6 mg/L,绝大部分硝酸盐未被还原成铵盐,进而省去了后续除铵工艺;零价铁化学还原、自养脱氮、异氧脱氮三者发生协同作用,表现于在厌氧环境下,零价铁发生腐蚀,产生阴极氢和二价铁,为自养脱氮菌提供了电子供体,从而促进了自养脱氮;异养脱氮不仅占主导地位,而且还会产生CO2,CO2被自养脱氮菌作为无机碳源加以利用,从而提高了体系中自养脱氮能力。这种协同作用表现为联合脱氮法的去除率增加,而在单一的异养脱氮或自养脱氮体系中则无法形成这一良性过程。实验表明联合脱氮法是一种潜在的有效可行的地下水原位修复方法。

关键词: 零价铁化学还原, 自养脱氮, 异养脱氮, 联合脱氮, 硝酸盐污染, 地下水修复

Mechanism Study on a Combined Denitrification Approach for Nitrate-Contaminated Groundwater Remediation

KEY WORDS: zero, valent, iron-based, chemical, reduction, autotrophic

本文参考文献

[1]

黄国鑫,刘菲,秦晓鹏,陈鸿汉,金爱芳.铁炭复配修复地下水中NO3--N的条件研究 [J].环境工程学报, 2010, 4(2): 259-263.

[2]

Zhang W L, Tian Z X, Zhang N, Li X Q. Nitrate pollution of groundwater in northern China [J]. Agriculture, Ecosystems & Environment, 1996, 59(3): 223-231.

Zhang W L, Tian Z X, Zhang N, Li X Q. Nitrate pollution of groundwater in northern China [J]. Agriculture, Ecosystems & Environment, 1996, 59(3): 223-231.

[3]

黄国鑫,刘菲,秦晓鹏,辛晓华,金爱芳.铁炭联用修复硝酸盐污染地下水 [J].水处理技术, 2010, 36(5): 70-73.

[4]

黄园英,秦臻,刘丹丹,王晓春.纳米铁还原脱氮动力学及其影响因素 [J].岩矿测试, 2011, 30(1): 53-58.

[5]

Choe S H, Ljestrand H M, Khim J. Nitrate reduction by zero-valent iron under different pH regimes [J]. Applied Geochemistry, 2004, 19(3): 335-342.

Choe S H, Ljestrand H M, Khim J. Nitrate reduction by zero-valent iron under different pH regimes [J]. Applied Geochemistry, 2004, 19(3): 335-342.

[6]

Liu H, Jiang W, Wan D, Qu J. Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water [J]. Journal of Hazardous Materials, 2009, 169(1-3): 23-28.

Liu H, Jiang W, Wan D, Qu J. Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water [J]. Journal of Hazardous Materials, 2009, 169(1-3): 23-28.

[7]

Matěj V, iinská S, Krejěí J, Janoch T. Biological water denitrification—A review [J]. Enzyme and Micro- bial Technology, 1992, 14(3): 170-83.

Matěj V, iinská S, Krejěí J, Janoch T. Biological water denitrification—A review [J]. Enzyme and Micro- bial Technology, 1992, 14(3): 170-83.

[8]

Shrimali M, Singh K P. New methods of nitrate removal from water [J].Environmental Pollution,2001,112(3): 351-359.

Shrimali M, Singh K P. New methods of nitrate removal from water [J].Environmental Pollution,2001,112(3): 351-359.

[9]

Van Rijn J, Tal Y, Schreier H J. Denitrification in recirculating systems: Theory and applications [J]. Aquacultural Engineering, 2006, 34(3): 364-376.

Van Rijn J, Tal Y, Schreier H J. Denitrification in recirculating systems: Theory and applications [J]. Aquacultural Engineering, 2006, 34(3): 364-376.

[10]

黄国鑫, Fallowfield H, Guan H, 刘菲.粒状铁与甲醇支持的生物-化学联用法去除富氧地下水中硝酸盐 [J].环境生态学报, 2012, 21(4): 726-732.

[11]

Westerhoff P, James J. Nitrate removal in zero-valent iron packed columns [J]. Water Research, 2003,37(8): 1818-830.

Westerhoff P, James J. Nitrate removal in zero-valent iron packed columns [J]. Water Research, 2003,37(8): 1818-830.

[12]

Rodríguez-Maroto J M, García-Herruzo F, García-Rubio A, G mez-Lahoz C, Vereda-Alonso C. Kinetics of the chemical reduction of nitrate by zero-valent iron [J]. Chemosphere, 2009, 74(6): 804-809.

Rodríguez-Maroto J M, García-Herruzo F, García-Rubio A, G mez-Lahoz C, Vereda-Alonso C. Kinetics of the chemical reduction of nitrate by zero-valent iron [J]. Chemosphere, 2009, 74(6): 804-809.

[13]

王淑莹,殷芳芳,侯红勋,许春生,彭永臻,王伟.以甲醇作为外碳源的生物反硝化 [J].北京工业大学学报, 2009, 35(11): 1521-526.

[14]

Gómez M A, González-López J, Hontoria-García E. Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter [J]. Journal of Hazardous Materials, 2000, B80(1-3): 69-80.

Gómez M A, González-López J, Hontoria-García E. Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter [J]. Journal of Hazardous Materials, 2000, B80(1-3): 69-80.

[15]

Kim H, Seagren E A, Davis A P. Engineered bioretention for removal of nitrate from stormwater runoff [J]. Water Environment Research, 2003, 75(4): 355-367.

Kim H, Seagren E A, Davis A P. Engineered bioretention for removal of nitrate from stormwater runoff [J]. Water Environment Research, 2003, 75(4): 355-367.

[16]

Schipper L A, Barkle G F, Vojvodic-Vukovic M. Maximum rates of nitrate removal in a denitrification wall [J]. Journal of Environmental Quality, 2005, 34(4): 1270-1276.

Schipper L A, Barkle G F, Vojvodic-Vukovic M. Maximum rates of nitrate removal in a denitrification wall [J]. Journal of Environmental Quality, 2005, 34(4): 1270-1276.

[17]

Siantar D P, Schreier C G, Chou C S, Reinhard M. Treatment of 1,2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts [J].Water Research,1996,30(10): 2315-2322.

Siantar D P, Schreier C G, Chou C S, Reinhard M. Treatment of 1,2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts [J].Water Research,1996,30(10): 2315-2322.

[18]

Della R C, Belgiorno V, Meric S. Cotton-supported heterotrophic denitrification of nitrate-rich drinking water with a sand filtration post-treatment [J]. Water South Africa, 2005, 31(2): 229-236.

Della R C, Belgiorno V, Meric S. Cotton-supported heterotrophic denitrification of nitrate-rich drinking water with a sand filtration post-treatment [J]. Water South Africa, 2005, 31(2): 229-236.

[19]

Daniels L, Belay N, Rajagopal B S, Weimer, P J. Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons[J]. Science, 1987, 237(4814): 509-511.

Daniels L, Belay N, Rajagopal B S, Weimer, P J. Bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons[J]. Science, 1987, 237(4814): 509-511.

[20]

Della R C, Belgiorno V, Meric S. An heterotrophic/autotrophic denitrification(HAD) approach for nitrate removal from drinking water [J]. Process Biochemistry, 2006, 41(5): 1022-1028.

Della R C, Belgiorno V, Meric S. An heterotrophic/autotrophic denitrification(HAD) approach for nitrate removal from drinking water [J]. Process Biochemistry, 2006, 41(5): 1022-1028.

[21]

Till B A, Weathers L J, Alvarez P J J.Fe(0)-supported autotrophic denitrification [J]. Environmental Science and Technology, 1998, 32(5): 634-639.

Till B A, Weathers L J, Alvarez P J J.Fe(0)-supported autotrophic denitrification [J]. Environmental Science and Technology, 1998, 32(5): 634-639.

[22]

Ergas S J, Reuss A F. Hydrogenotrophic denitrification of drinking water using a hollow fibre membrane bioreactor [J]. Journal of Water Supply Research and Technology-Aqua, 2001, 50(3): 161-171.

Ergas S J, Reuss A F. Hydrogenotrophic denitrification of drinking water using a hollow fibre membrane bioreactor [J]. Journal of Water Supply Research and Technology-Aqua, 2001, 50(3): 161-171.

[23]

Weber K A, Pollock J, Cole K A, O'Connor S M, Achenbach L A, Coates J D. Anaerobic nitrate-dependent iron(Ⅱ) bio-oxidation by a novel lithoauto-trophic betaproteobacterium, Strain 2002 [J]. Applied and Environment Microbiology, 2006, 72(1): 686-694.

Weber K A, Pollock J, Cole K A, O'Connor S M, Achenbach L A, Coates J D. Anaerobic nitrate-dependent iron(Ⅱ) bio-oxidation by a novel lithoauto-trophic betaproteobacterium, Strain 2002 [J]. Applied and Environment Microbiology, 2006, 72(1): 686-694.

[24]

Fernndez-Nava Y, Marañn E, Soons J, Castrillón L. Denitrification of high nitrate concentration wastewater using alternative carbon sources [J]. Journal of Hazardous Materials, 2010, 173: 682-688.

Fernndez-Nava Y, Marañn E, Soons J, Castrillón L. Denitrification of high nitrate concentration wastewater using alternative carbon sources [J]. Journal of Hazardous Materials, 2010, 173: 682-688.

[25]

Chang C, Tseng S, Huang H. Hydrogenotrophic denitri-fication with immobilized Alcaligenes eutrophus for drinking water treatment [J]. Bioresource Technology, 1999, 69(1): 53-58.

Chang C, Tseng S, Huang H. Hydrogenotrophic denitri-fication with immobilized Alcaligenes eutrophus for drinking water treatment [J]. Bioresource Technology, 1999, 69(1): 53-58.

[26]

Lee J W, Lee K H, Park K Y, Maeng S K. Hydro-genotrophic denitrification in a packed bed reactor: Effects of hydrogen-to- water flow rate ratio [J]. Bioresource Technology, 2010, 101(11): 3940-3946.

Lee J W, Lee K H, Park K Y, Maeng S K. Hydro-genotrophic denitrification in a packed bed reactor: Effects of hydrogen-to- water flow rate ratio [J]. Bioresource Technology, 2010, 101(11): 3940-3946.

[27]

Lee K, Rittmann B E. Applying a novel autohydrogeno-trophic hollow-fiber membrane biofilm reactor for denitrification of drinking water [J]. Water Research, 2002, 36(8): 2040-2052.

Lee K, Rittmann B E. Applying a novel autohydrogeno-trophic hollow-fiber membrane biofilm reactor for denitrification of drinking water [J]. Water Research, 2002, 36(8): 2040-2052.

相似文献(共20条)

[1]

黄园英, 秦臻, 刘丹丹, 王晓春. 纳米铁还原脱氮动力学及其影响因素. 岩矿测试, 2011, 30(1): 53-58.

[2]

刘丛强, 肖化云. 水样硝酸盐氮同位素分析预处理方法探讨. 岩矿测试, 2002, (2): 105-108.

[3]

邓日欣, 罗伟嘉, 韩奕彤, 李志雄, 陈家玮. 膨润土负载纳米铁镍同步修复地下水中三氯乙烯和六价铬复合污染. 岩矿测试, 2018, 37(5): 541-548. doi: 10.15898/j.cnki.11-2131/td.201801280013

[4]

张永涛, 张莉, 左海英, 桂建业, 李晓亚, 李桂香. 重氮甲烷衍生气相色谱-质谱法检测地下水中17种酸性除草剂. 岩矿测试, 2010, 29(4): 345-349.

[5]

刘菲. 地下水污染监测与修复专栏成果简评. 岩矿测试, 2012, 31(4): 645-646.

[6]

安茂国, 赵庆令, 谭现锋, 王永刚, 李清彩. 化学还原-稳定化联合修复铬污染场地土壤的效果研究. 岩矿测试, 2019, 38(2): 204-211. doi: 10.15898/j.cnki.11-2131/td.201806040068

[7]

朱洪, 刘静, 焦晗涛, 张晶, 段江涛, 连兴业, 侯亚楠. 基于SEM-EDS及GC-MS技术研究有机氯分子结构对零价铜脱氯机制的影响. 岩矿测试, 2015, 34(2): 169-175. doi: 10.15898/j.cnki.11-2131/td.2015.02.003

[8]

王玉功, 王华, 刘建军, 余志峰. 沙棘树干茎流液中总氮总磷联合消解的测定方法. 岩矿测试, 2014, 33(5): 665-669.

[9]

徐文, 周建伟, 刘存富, 甘义群, 刘运德, 张彦鹏. 地下水硝酸盐15N和18O同位素在线测试技术研究. 岩矿测试, 2013, 32(2): 305-312.

[10]

王延利, 李雪梅. 蒙脱石提纯研究进展. 岩矿测试, 2006, 25(3): 252-258.

[11]

黄园英 刘菲 汤鸣皋 孙文超. 纳米镍/铁对四氯乙烯快速脱氯试验. 岩矿测试, 2005, (2): 93-96101.

[12]

杜钰娉, 张汉萍, 李海萍, 董薇, 刘文华. 地下水中高锰酸盐指数和硝酸根铵根稳定性研究. 岩矿测试, 2014, 33(3): 424-430.

[13]

胡平, 王淑惠, 刘印平, 杨立新. 液态乳及乳粉中硝酸盐的污染分析. 岩矿测试, 2013, 32(2): 330-333.

[14]

路国慧, 杨永亮, 刘晓端, 黄毅, 何俊, 徐清, 黄园英. 沈阳地区河水及沿岸地下水中卤代烃的污染特征. 岩矿测试, 2009, 28(4): 316-320.

[15]

李明礼, 柳诚, 王祝, 邬国栋, 夏鹏超. 地下水常见无机污染物研究进展. 岩矿测试, 2010, 29(5): 565-570.

[16]

祁彦洁, 刘菲. 地下水中抗生素污染检测分析研究进展. 岩矿测试, 2014, 33(1): 67-73.

[17]

胡外英, 张勤, 于兆水. 多目标地球化学调查土壤样品中氮和碳的快速测定. 岩矿测试, 2007, 26(3): 235-237.

[18]

程雅楠, 关翔宇, 曲文龙, 陈鸿汉, 刘菲, 谢宇轩, 朱玲玲. 氨氮污染源区包气带剖面微生物生态分布特征的研究. 岩矿测试, 2013, 32(2): 290-299.

[19]

马毅红, 李钟平, 尹艺青. 离子液体[Emim]PF6-邻二氮菲超声萃取铁尾矿中的铁. 岩矿测试, 2013, 32(3): 456-461.

[20]

马仲武, 胡超涌, 王红梅, 潘涵香. 邻二氮菲分光光度法测定碳酸盐相中微量亚铁. 岩矿测试, 2007, 26(3): 198-200.

计量
  • PDF下载量(1360)
  • 文章访问量(1318)
  • 被引次数(0)
目录

Figures And Tables

联合脱氮法用于硝酸盐污染地下水修复的机理研究

黄国鑫, 高云鹤, Howard Fallowfield, Huade Guan, 刘菲