【引用本文】 孙冬阳, 王广, 范晨子, 等. 激光剥蚀-电感耦合等离子体质谱线扫描技术的空间分辨率研究[J]. 岩矿测试, 2012, 31(1): 127-131.
 ,  ,  , et al. Study on Spatial Resolution for Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Line Scan Method[J]. Rock and Mineral Analysis, 2012, 31(1): 127-131.

激光剥蚀-电感耦合等离子体质谱线扫描技术的空间分辨率研究

1. 

国家地质实验测试中心, 北京 100037

2. 

国家地质实验测试中心, 北京 100037

3. 

国家地质实验测试中心, 北京 100037

4. 

国家地质实验测试中心, 北京 100037

5. 

国家地质实验测试中心, 北京 100037

6. 

国家地质实验测试中心, 北京 100037

7. 

国家地质实验测试中心, 北京 100037

8. 

国家地质实验测试中心, 北京 100037

收稿日期: 2011-06-09 

基金项目: 国土资源地质大调查项目(121201120276)科技部创新方法工作专项(2009IM032200)

Study on Spatial Resolution for Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Line Scan Method

1. 

National Research Center for Geoanalysis, Beijing 100037, China

2. 

National Research Center for Geoanalysis, Beijing 100037, China

3. 

National Research Center for Geoanalysis, Beijing 100037, China

4. 

National Research Center for Geoanalysis, Beijing 100037, China

5. 

National Research Center for Geoanalysis, Beijing 100037, China

6. 

National Research Center for Geoanalysis, Beijing 100037, China

7. 

National Research Center for Geoanalysis, Beijing 100037, China

8. 

National Research Center for Geoanalysis, Beijing 100037, China

Received Date: 2011-06-09

摘要:激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)作为一项实用的技术被广泛应用于原位微区分析。在学者们更为关注的元素空间分布问题上,LA-ICP-MS线扫描较单点剥蚀具有更大的优势。线扫描过程中元素的空间分辨率是影响分析结果准确程度的因素之一。每个脉冲间的信号如果严重叠加会导致较低的空间分辨率。文章通过LA-ICP-MS的单脉冲剥蚀实验,研究了合成硅酸盐玻璃标准样品CGSG中不同元素的信号时间结构,及其对线扫描的空间分辨率的影响。结果表明,当激光束斑40 μm时,应用LA-ICP-MS进行线扫描测量空间分辨率能够满足线扫描技术分析的需求。

关键词: 激光剥蚀-电感耦合等离子体质谱法, 线扫描, 空间分辨率, 单脉冲

Study on Spatial Resolution for Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Line Scan Method

KEY WORDS: laser, ablation-inductively, coupled, plasma-mass

本文参考文献

[1]

罗彦,胡圣虹,刘勇胜,高山.激光剥蚀电感耦合等离子体质谱微区分析新进展[J].分析化学,2001,29(11):1345-1352.

[2]

Xiao Y L, Sun W D, Hoefs J, Simon K, Zhang Z M. Making continental crust through slab melting: Constraints from niobium tantalum fractionation in UHP metamorphic rutile[J].Geochimica et Cosmochimica Acta,2006,70:4770-4782.

Xiao Y L, Sun W D, Hoefs J, Simon K, Zhang Z M. Making continental crust through slab melting: Constraints from niobium tantalum fractionation in UHP metamorphic rutile[J].Geochimica et Cosmochimica Acta,2006,70:4770-4782.

[3]

Schmidt A, Weyer S, John T,Brey G P.HFSE system-atics of rutile-bearing eclogites: New insights into subduction zone processes and implications[J]. Geochimica et Cosmochimica Acta, 2009,73:455-468.

Schmidt A, Weyer S, John T,Brey G P.HFSE system-atics of rutile-bearing eclogites: New insights into subduction zone processes and implications[J]. Geochimica et Cosmochimica Acta, 2009,73:455-468.

[4]

宗克清,刘勇胜,高长贵,袁洪林,陈海红. CCSD主孔榴辉岩中磷灰石微区微量元素和Sr同位素组成研究[J].岩石学报, 2007,23(12):3267-3274.

[5]

Seltzer M D, Berry K H. Laser ablation ICP-MS profiling and semiquantitative determination of trace element concentrations in desert tortoise shells: Documenting the uptake of elemental toxicants[J].Science of The Total Environment,2005,339:253-265.

Seltzer M D, Berry K H. Laser ablation ICP-MS profiling and semiquantitative determination of trace element concentrations in desert tortoise shells: Documenting the uptake of elemental toxicants[J].Science of The Total Environment,2005,339:253-265.

[6]

Jackson B, Harper S, Smit L, Flinn J. Elemental mapping and quantitative analysis of Cu, Zn, and Fe in rat brain sections by laser ablation ICP-MS[J].Analytical and Bioanalytical Chemistry, 2005,384:951-957.

Jackson B, Harper S, Smit L, Flinn J. Elemental mapping and quantitative analysis of Cu, Zn, and Fe in rat brain sections by laser ablation ICP-MS[J].Analytical and Bioanalytical Chemistry, 2005,384:951-957.

[7]

Pisonero J, Kroslakova I, Günther D, Latkoczy C. Laser ablation inductively coupled plasma mass spectrometry or direct analysis of the spatial distribution of trace elements metallurgical-grade silicon[J].Analytical and Bioanalytical Chemistry, 2006, 386:12-20.

Pisonero J, Kroslakova I, Günther D, Latkoczy C. Laser ablation inductively coupled plasma mass spectrometry or direct analysis of the spatial distribution of trace elements metallurgical-grade silicon[J].Analytical and Bioanalytical Chemistry, 2006, 386:12-20.

[8]

贾泽荣,詹秀春,何红蓼,胡明月,樊兴涛,王广.激光烧蚀等离子体质谱结合归一定量方法原位线扫描检测石榴石多种元素[J].分析化学,2009,37(5):653-658.

[9]

Campbell A J, Humayun M. Trace element microanaly-sis in Iron meteorites by laser ablation ICPMS [J]. Analytical Chemistry, 1999,71:939-946.

Campbell A J, Humayun M. Trace element microanaly-sis in Iron meteorites by laser ablation ICPMS [J]. Analytical Chemistry, 1999,71:939-946.

[10]

Li X H, Liang X R, Sun M, Guan H, Malpas J G. Precise 206Pb/238U age determination on zircons by laser ablation microprobe-inductively coupled plasma-mass spectrometry using continuous linear ablation[J]. Chemical Geology, 2001,175:209-219.

Li X H, Liang X R, Sun M, Guan H, Malpas J G. Precise 206Pb/238U age determination on zircons by laser ablation microprobe-inductively coupled plasma-mass spectrometry using continuous linear ablation[J]. Chemical Geology, 2001,175:209-219.

[11]

Sanborn M, Telmer K. The spatial resolution of LA-ICP-MS line scans across heterogeneous materials such as fish otoliths and zoned minerals[J] Journal of Analytical Atomic Spectrometry,2003, 18:1231-1237.

Sanborn M, Telmer K. The spatial resolution of LA-ICP-MS line scans across heterogeneous materials such as fish otoliths and zoned minerals[J] Journal of Analytical Atomic Spectrometry,2003, 18:1231-1237.

[12]

Russo R E, Mao X L, Borisov O V, Liu H C. Influence of wavelength on fractionation in laser ablation ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2000,15:1115-1120.

Russo R E, Mao X L, Borisov O V, Liu H C. Influence of wavelength on fractionation in laser ablation ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2000,15:1115-1120.

[13]

Guillong M, Günther D. Effect of particle size distribu-tion on ICP-induced elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2002,17:831-837.

Guillong M, Günther D. Effect of particle size distribu-tion on ICP-induced elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2002,17:831-837.

[14]

Fricker M B, Kutscher D, Aeschlimann B, Frommer J, Dietiker R, Bettmer J, Günther D. High spatial resolution trace element analysis by LA-ICP-MS using a novel ablation cell for multiple or large samples[J]. International Journal of Mass Spectrometry, 2011,307:39-45.

Fricker M B, Kutscher D, Aeschlimann B, Frommer J, Dietiker R, Bettmer J, Günther D. High spatial resolution trace element analysis by LA-ICP-MS using a novel ablation cell for multiple or large samples[J]. International Journal of Mass Spectrometry, 2011,307:39-45.

[15]

Hu M Y, Fan X T, Stoll B, Kuzmin D, Liu Y, Liu Y S, Sun W D, Wang G, Zhan X C, Jochum K P. Preliminary characterisation of new reference materials for microanalysis: Chinese geological standard glasses CGSG-1, CGSG-2, CGSG-4 and CGSG-5[J]. Geostandards and Geoanalytical Research, 2011,35:235-251.

Hu M Y, Fan X T, Stoll B, Kuzmin D, Liu Y, Liu Y S, Sun W D, Wang G, Zhan X C, Jochum K P. Preliminary characterisation of new reference materials for microanalysis: Chinese geological standard glasses CGSG-1, CGSG-2, CGSG-4 and CGSG-5[J]. Geostandards and Geoanalytical Research, 2011,35:235-251.

相似文献(共19条)

[1]

范晨子, 胡明月, 赵令浩, 孙冬阳, 蒯丽君, 蔡炳贵, 詹秀春. 激光剥蚀电感耦合等离子体质谱分析石笋样品中多元素比值及45种元素含量. 岩矿测试, 2013, 32(3): 383-391.

[2]

朱碧, 朱志勇, 吕苗, 杨涛. Iolite软件处理LA-ICP-MS线扫描数据适用性研究. 岩矿测试, 2017, 36(1): 14-21. doi: 10.15898/j.cnki.11-2131/td.2017.01.003

[3]

张德贤. 磁铁矿中微量元素的激光剥蚀-电感耦合等离子体质谱分析方法探讨. 岩矿测试, 2012, 31(1): 120-126.

[4]

肖志斌, 柳小明, 李正辉, 张红. 激光剥蚀-电感耦合等离子体质谱准确测定锆石中钛的含量. 岩矿测试, 2012, 31(2): 229-233.

[5]

袁继海, 詹秀春, 樊兴涛, 胡明月. 硫化物矿物中痕量元素的激光剥蚀-电感耦合等离子体质谱微区分析进展. 岩矿测试, 2011, 30(2): 121-130.

[6]

徐靖, 王昌燧, 姚政权, 毛振伟, 朱铁权, 袁传勋. 不同窑口古瓷断面能量色散X射线荧光光谱线扫描分析. 岩矿测试, 2007, 26(5): 381-384.

[7]

罗立强. 主编絮语. 岩矿测试, 2011, 30(2): I-II.

[8]

徐进力, 蒋月秀, 白金峰, 张勤. 高分辨率等离子体质谱测定水提取相中59个元素的应用研究. 岩矿测试, 2014, 33(3): 402-410.

[9]

金献忠, 谢健梅, 陈建国. 激光剥蚀电感耦合等离子体质谱法测定金属镀锡层的厚度. 岩矿测试, 2015, 34(3): 286-291. doi: 10.15898/j.cnki.11-2131/td.2015.03.004

[10]

付宇, 孙晓明, 熊德信. 激光剥蚀-电感耦合等离子体质谱法对白钨矿中稀土元素的原位测定. 岩矿测试, 2013, 32(6): 875-882.

[11]

白金峰, 张勤, 孙晓玲, 董永胜, 范辉, 徐进力, 刘亚轩. 高分辨电感耦合等离子体质谱法测定地球化学样品中钪钇和稀土元素. 岩矿测试, 2011, 30(1): 17-22.

[12]

白金峰, 薄玮, 张勤, 王海鹰. 高分辨电感耦合等离子体质谱法测定地球化学样品中的 36种元素. 岩矿测试, 2012, 31(5): 814-819.

[13]

王冠, 李华玲, 任静, 杨波, 胡志中. 高分辨电感耦合等离子体质谱法测定地质样品中稀土元素的氧化物干扰研究. 岩矿测试, 2013, 32(4): 561-567.

[14]

范晨子, 胡明月, 赵令浩, 孙冬阳, 詹秀春. 锆石铀-铅定年激光剥蚀-电感耦合等离子体质谱原位微区分析进展. 岩矿测试, 2012, 31(1): 29-46.

[15]

赵令浩, 詹秀春, 胡明月, 范晨子, 孙冬阳, 刘传宝. 单个熔体包裹体激光剥蚀电感耦合等离子体质谱分析及地质学应用. 岩矿测试, 2013, 32(1): 1-14.

[16]

吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展. 岩矿测试, 2015, 34(5): 503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002

[17]

马光祖, 梁国立. 理学3080E型X射线荧光光谱仪分辨率的改善. 岩矿测试, 1998, (1): 75-78.

[18]

郭冬发, 张彦辉, 武朝晖, 朱明燕, 王玉学, 崔建勇, 谭靖. 高分辨电感耦合等离子体质谱法测定铀矿石样品中234U/238U、230Th/232Th和228Ra/226Ra同位素比值 . 岩矿测试, 2009, 28(2): 101-107.

[19]

闫巧娟, 魏小燕, 叶美芳, 赵慧博, 周宁超. 激光剥蚀电感耦合等离子体质谱-电子探针分析白山堂铜矿中的黄铁矿成分. 岩矿测试, 2016, 35(6): 658-666. doi: 10.15898/j.cnki.11-2131/td.2016.06.012

计量
  • PDF下载量(1000)
  • 文章访问量(1486)
  • 被引次数(0)
目录

Figures And Tables

激光剥蚀-电感耦合等离子体质谱线扫描技术的空间分辨率研究

孙冬阳, 王广, 范晨子, 赵令浩, 胡明月, 樊兴涛, 袁继海, 詹秀春