【引用本文】 陈春霏, 洪欣, 王晓飞, 等. X射线荧光光谱法测定土壤和沉积物中的锰[J]. 岩矿测试, 2020, 39(5): 777-784. doi: 10.15898/j.cnki.11-2131/td.201905300077
CHEN Chun-fei, HONG Xin, WANG Xiao-fei, et al. Determination of Manganese Content in Soils and Sediments by X-ray Fluorescence Spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5): 777-784. doi: 10.15898/j.cnki.11-2131/td.201905300077

X射线荧光光谱法测定土壤和沉积物中的锰

1. 

广西壮族自治区生态环境监测中心, 广西 南宁 530028

2. 

湖北理工学院环境科学与工程学院, 湖北 黄石 435003

收稿日期: 2019-05-30  修回日期: 2019-09-30  接受日期: 2020-06-04

基金项目: 广西自然科学基金项目“基于砷、镉污染农田安全利用的生态修复研究”(2015GXNSFEA139001);广西自然科学基金项目“西江流域水环境重金属污染机制与调控”(2013GXNSFEA053001);广西土壤污染与生态修复人才小高地项目

作者简介: 陈春霏, 硕士, 工程师, 从事环境监测分析和环境科研工作。E-mail:gxhjccf@126.com

Determination of Manganese Content in Soils and Sediments by X-ray Fluorescence Spectrometry

1. 

Guangxi Zhuang Autonomous Region Ecological and Environmental Monitoring Centre, Nanning 530028, China

2. 

School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China

Received Date: 2019-05-30
Revised Date: 2019-09-30
Accepted Date: 2020-06-04

摘要:X射线荧光光谱法(XRF)是测定土壤和沉积物中锰的重要方法,具有制样简单、非破坏性测定、检测速度快等优点。目前用于建立工作曲线的土壤和沉积物标准物质的锰含量最高为2490mg/kg,采用XRF法测定受污染土壤和沉积物中的锰含量时易超出工作曲线测定范围。本文将锰标准溶液定量加入到土壤标准物质中,制备锰含量更高的校准样品,工作曲线的测定上限范围由2490mg/kg提高至3780mg/kg。该方法测定不同含量标准物质中锰含量的结果均在认定值范围内,实际样品的加标回收率为97.8%~108.3%,高含量锰的实际样品测定值与电感耦合等离子体发射光谱法测定值的相对偏差小于5.7%,相对标准偏差(RSD)小于0.4%(n=7)。实验结果表明该法测定锰含量高的土壤和沉积物的准确度和精密度良好。

关键词: X射线荧光光谱法, 加标回收, , 土壤, 沉积物

要点

(1) 将锰标准溶液定量加入到土壤标准物质中以制备更高浓度的校准样品。

(2) 利用锰标准溶液制备的校准样品均匀性好,基体改变小。

(3) 该方法适用于土壤和沉积物中高含量锰的测定。

Determination of Manganese Content in Soils and Sediments by X-ray Fluorescence Spectrometry

ABSTRACT

OBJECTIVES:

To develop a good method for the determination of manganese in polluted soil or sediment.

METHODS:

To address this major concern, manganese solutions were added to the commercially available soil standards in a quantitative manner to give a series of new soil standards with higher manganese content. The content of manganese can be determined by X-ray fluorescence spectrometry.

RESULTS:

The establishment of a novel standard curve by taking advantage of these new soil standards could significantly promote the upper limit of manganese measurement from 2490mg/kg to 3780mg/kg. The analytical results of manganese were consistent with the reference value and a recovery of 97.8%-108.3%. The results of high-manganese samples were consistent with the values acquired by inductively coupled plasma-optical emission spectrometry, with the relative deviation less than 5.7% and the relative standard deviation lower than 0.4% (n=7).

Conclusion:

Results show good accuracy and precision in the determination of high-manganese soils and sediments.

KEY WORDS: X-ray fluorescence spectrometry, spiked recovery test, manganese, soil, sediment

HIGHLIGHTS

(1) Standard solution was added to the soil reference materials to prepare higher concentration of manganese calibration samples.

(2) The calibration sample prepared by adding manganese standard solution had good uniformity and little matrix change.

(3) This method was suitable for the determination of high content manganese in soils or sediments.

本文参考文献

[1]

Curran C P, Robert M P, Ho S, et al. Incorporating genetics and genomics in risk assessment for inhaled manganese:From data to policy[J]. Neuro Toxicology, 2009, 30(5): 754-760.

[2]

张飞, 罗学刚, 王佳, 等. U及伴生重金属Mn、Pb对土壤酶活性的影响[J]. 环境科学与技术, 2015, 38(3): 44-49.

Zhang F, Luo X G, Wang J, et al. Effects of uranium and associated heavy metals Mn and Pb on soil enzyme activities[J]. Environmental Science & Technology, 2015, 38(3): 44-49.

[3]

于方明, 漆培艺, 刘可慧, 等. 锰污染土壤石灰改良对油茶生长及抗氧化酶系统的影响[J]. 农业环境科学学报, 2019, 38(8): 1882-1890.

Yu F M, Qi P Y, Liu K H, et al. Effects of lime on the growth and antioxidant enzyme system of camellia oleifera in manganese-contaminated soil[J]. Journal of Agro-Environment Science, 2019, 38(8): 1882-1890.

[4]

马剑丽, 倪群英. 微波消解-火焰原子吸收法测定土壤中铜锌铅镍锰[J]. 广州化工, 2006, 34(4): 61-62.

Ma J L, Ni Q Y. Detecting Cu, Zn, Pb, Ni and Mn in soil with microwave digestion- AAS[J]. Guangzhou Chemical Industry, 2006, 34(4): 61-62.

[5]

赵庆令, 李清彩. 电感耦合等离子体发射光谱法同时测定土壤样品中54种组分[J]. 岩矿测试, 2011, 30(1): 75-78.

Zhao Q L, Li Q C. Simultaneous determination of 54 components in soil samples by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2011, 30(1): 75-78.

[6]

徐进力, 邢夏, 顾雪, 等. KED模式/电感耦合等离子体质谱(ICP-MS)法测定地球化学样品中磷、钛、钒、铬、锰[J]. 中国无机分析化学, 2018, 8(5): 28-33.

Xu J L, Xing X, Gu X, et al. Determination of P, Ti, Ⅴ, Cr, Mn in geological samples by KED mode/ICP-MS[J]. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(5): 28-33.

[7]

王世芳, 韩平, 王纪华, 等. X射线荧光光谱分析法在土壤重金属检测中的应用研究进展[J]. 食品安全质量检测学报, 2016, 7(11): 4394-4400.

Wang S F, Han P, Wang J H, et al. Application of X-ray fluorescence spectrometry on the detection of heavy metals in soil[J]. Food Safety and Quality Detection Technology, 2016, 7(11): 4394-4400.

[8]

吉昂. X射线荧光光谱三十年[J]. 岩矿测试, 2012, 31(3): 383-398.

Ji A. Development of X-ray fluorescence spectrometry in the 30 years[J]. Rock and Mineral Analysis, 2012, 31(3): 383-398.

[9]

Ferri R, Donna F, Smith D R, et al. Heavy metals in soil and salad in the proximity of historical ferroalloy emission[J].Journal of Environmental Protection, 2012, 3: 374-375. doi: 10.4236/jep.2012.35047

[10]

田衎, 郭伟臣, 杨永, 等. 波长色散X射线荧光光谱法测定土壤和水系沉积物中13种重金属元素[J]. 冶金分析, 2019, 39(10): 30-36.

Tian K, Guo W C, Yang Y, et al. Determination of thirteen heavy metals in soil and stream sediment by wavelength dispersive X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2019, 39(10): 30-36.

[11]

Minkina T M, Soldatov A V, Nevidomskaya D G, et al. New approaches to studying heavy metals in soils by X-ray absorption spectroscopy (XANES) and extractive fractionation[J].Geochemistry International, 2016, 54(2): 197-204. doi: 10.1134/S001670291512006X

[12]

梁祖顺, 李小莉, 刘峰, 等. 粉末压片-X射线荧光光谱法测定含铌多金属矿样中铌[J]. 冶金分析, 2014, 34(10): 65-69.

Liang Z S, Li X L, Liu F, et al. Determination of niobium in niobium containing multi-metal ore by X-ray fluorescence spectrometry with powder pressed pellet[J]. Metallurgical Analysis, 2014, 34(10): 65-69.

[13]

王子杰, 王干珍, 汤行, 等. 粉末压片-X射线荧光光谱法测定铋矿石中铋及主量组分[J]. 冶金分析, 2018, 38(8): 21-25.

Wang Z J, Wang G Z, Tang X, et al. Determination of bismuth and major components in bismuth ore by X-ray fluorescence spectrometry with pressed powder pellet[J]. Metallurgical Analysis, 2018, 38(8): 21-25.

[14]

张莉娟, 刘义博, 李小莉, 等. 超细粉末压片法-X射线荧光光谱测定水系沉积物和土壤中的主量元素[J]. 岩矿测试, 2014, 33(4): 517-522.

Zhang L J, Liu Y B, Li X L, et al. Determination of major elements in stream sediments and soils by X-ray fluorescence spectrometry using pressed-superfine powder pellets[J]. Rock and Mineral Analysis, 2014, 33(4): 517-522.

[15]

刘玉纯, 林庆文, 马玲, 等. 粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化[J]. 岩矿测试, 2018, 37(6): 671-677.

Liu Y C, Lin Q W, Ma L, et al. Optimization of measurement conditions for geochemical survey sample analysis by X-ray fluorescence spectrometry with pressed powder pellet sample preparation[J]. Rock and Mineral Analysis, 2018, 37(6): 671-677.

[16]

孙晓慧, 李章, 刘希良, 等. 微波消解-电感耦合等离子体原子发射光谱法测定土壤和水系沉积物中15种组分[J]. 冶金分析, 2014, 34(11): 56-60.

Sun X H, Li Z, Liu X L, et al. Determination of fifteen components in soil and stream sediment by inductively coupled plasma atomic emission spectrometry after microwave digestion[J]. Metallurgical Analysis, 2014, 34(11): 56-60.

[17]

何恬叶, 张颖红, 胡子文, 等. 微波消解ICP-OES法测定土壤样品中22种元素[J]. 分析试验室, 2018, 37(1): 84-87.

He T Y, Zhang Y H, Hu Z W, et al. Determination of 22 elements in soil by ICP-OES with microwave digestion[J]. Chinese Journal of Analysis Laboratory, 2018, 37(1): 84-87.

[18]

余海军, 张莉莉, 屈志朋, 等. 微波消解-电感耦合等离子体原子发射光谱(ICP-AES)法同时测定土壤中主次元素[J]. 中国无机分析化学, 2019, 9(1): 34-38.

Yu H J, Zhang L L, Qu Z P, et al. Determination of primary and secondary elements in soil by inductively coupled plasma atomic emission spectrometry with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(1): 34-38.

[19]

杨叶琴, 赵昌平, 赵杰, 等. 微波消解-电感耦合等离子体原子发射光谱法测定土壤中8种重金属元素的含量[J]. 理化检验(化学分册), 2019, 5(1): 63-67.

Yang Y Q, Zhao C P, Zhao J, et al. Determination of eight heavy metal elements in soil by microwave digestion inductively coupled plasma atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2019, 5(1): 63-67.

[20]

龙海洋, 王维生, 韦月越, 等. 矿区周边土壤中重金属形态分析及污染风险评价[J]. 广西大学学报, 2016, 41(5): 1676-1682.

Long H Y, Wang W S, Wei Y Y, et al. Speciation analysis and pollution risk assessment of heavy metals in the soils surrounding mine area[J]. Journal of Guangxi University (Natural Science Edition), 2016, 41(5): 1676-1682.

[21]

高焕方, 曹园城, 何炉杰, 等. Tessier法和BCR法对比磷酸二氢钠处置含铅污染土壤形态分析[J]. 环境工程学报, 2017, 11(10): 2751-2756.

Gao H F, Cao Y C, He L J, et al. Speciation analysis of lead-contaminated soil treated with sodium dihydrogen phosphate using Tessier and BCR[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 2751-2756.

[22]

倪子月, 陈吉文, 刘明博, 等. 能量色散X射线荧光光谱法测定土壤中铬和锰的干扰校正[J]. 冶金分析, 2016, 36(10): 10-14.

Ni Z Y, Chen J W, Liu M B, et al. Interference correction of energy dispersive X-ray fluorescence spectrometric determination of chromium and manganese in soil[J]. Metallurgical Analysis, 2016, 36(10): 10-14.

[23]

尹静, 黄睿涛. 粉末压片制-X射线荧光光谱法测定铁矿石中锌砷锰[J]. 岩矿测试, 2011, 30(4): 491-493.

Yin J, Huang R T. Elemental determination of zinc, arsenic and manganese in iron ore by X-ray fluorescence spectrometry with pressed-powder pellets[J]. Rock and Mineral Analysis, 2011, 30(4): 491-493.

[24]

邓述培, 范鹏飞, 唐玉霜, 等. X射线荧光光谱(XRF)法测定土壤污染样品中9种重金属元素[J]. 中国无机分析化学, 2019, 9(4): 12-15.

Deng S P, Fan P F, Tang Y S, et al. Determination of 9 kinds of soil pollution of heavy metals elements in samples by X-ray fluorescence spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(4): 12-15.

[25]

吕善胜, 徐金龙, 曲强, 等. 理论α系数和经验系数法相结合校正-X射线荧光光谱法测定铁矿石中14种组分[J]. 冶金分析, 2016, 36(4): 46-51.

Lü S S, Xu J L, Qu Q, et al. Determination of fourteen components in iron ore by X-ray fluorescence spectrometry with theoretical α coefficient and empirical coefficient method correction[J]. Metallurgical Analysis, 2016, 36(4): 46-51.

[26]

殷惠民, 杜祯宇, 任立军, 等. 波长色散X射线荧光光谱谱线重叠和基体效应校正系数有效性判断及在土壤、沉积物重金属测定中的应用[J]. 冶金分析, 2018, 38(7): 1-11.

Yin H M, Du Z Y, Ren L J, et al. Coefficient effectiveness judgment of overlapping line and matrix effect correction in wavelength dispersive X-ray fluorescence spectrometry and its application in determination of heavy metal elements in soils and sediment samples[J]. Metallurgical Analysis, 2018, 38(7): 1-11.

[27]

殷惠民, 杜祯宇, 李玉武, 等. 能量色散X射线荧光光谱仪和简化的基体效应校正模型测定土壤、沉积物中重金属元素[J]. 冶金分析, 2018, 38(4): 1-10.

Yin H M, Du Z Y, Li Y W, et al. Determination of heavy metal elements in soil and sediment by energy dispersive X-ray fluorescence spectrometer with simplified matrix effect correction model[J]. Metallurgical Analysis, 2018, 38(4): 1-10.

[28]

胡德新, 武素茹, 刘跃勇, 等. 改进BCR法-电感耦合等离子体发射光谱法测定矿产品堆场土壤中镉砷铅的化学形态[J]. 岩矿测试, 2014, 33(3): 369-373.

Hu D X, Wu S R, Liu Y Y, et al. Determination of chemical species of cadmium, arsenic and lead in mineral yard soil by modified BCR and ICP-AES method[J]. Rock and Mineral Analysis, 2014, 33(3): 369-373.

[29]

林承奇, 黄华斌, 胡恭任, 等. 九龙江流域水稻土重金属赋存形态及污染评价[J]. 环境科学, 2019, 40(1): 453-460.

Lin C Q, Huang H B, Hu G R, et al. Assessment of the speciation and pollution of heavy metals in paddy soils from the Jiulong River Basin[J]. Environmental Science, 2019, 40(1): 453-460.

[30]

谭秉和, 张香荣, 姚迪民, 等. 用X射线光谱法测定锰的X射线发射谱的细结构及锰的价态分析[J]. 岩矿测试, 1994, 13(3): 169-174.

Tan B H, Zhang X R, Yao D M, et al. Measurement of X-ray Mn Kβ spectra structure and chemical state analysis of Mn by the conventional XRF spectrometer[J]. Rock and Mineral Analysis, 1994, 13(3): 169-174.

[31]

张建波, 王谦, 林力, 等. 锰的价态研究及在X射线荧光光谱测定锰矿中的应用[J]. 冶金分析, 2011, 31(4): 20-25.

Zhang J B, Wang Q, Lin L, et al. Study on chemical valence of manganese and its application in X-ray fluorescence spectrometry determination of manganese ore[J]. Metallurgical Analysis, 2011, 31(4): 20-25.

[32]

谭和平, 高杨, 吕昊, 等. 土壤重金属X射线荧光光谱非标样测试方法研究[J]. 生态环境学报, 2012, 21(4): 760-763.

Tan H P, Gao Y, Lü H, et al. The research of non-standard test method in soil heavy metal by X-ray fluorescence spectrometry[J]. Ecology and Environmental Sciences, 2012, 21(4): 760-763.

[33]

卢兵, 杜少文, 盛红宇, 等. AAS、ICP-AES、ICP-MS及XRF测定地质样品中铜铅锌锰的对比研究[J]. 黄金, 2014, 35(9): 78-81.

Lu B, Du S W, Sheng H Y, et al. Contrast research on determination of Cu, Pb, Zn, Mn by AAS, ICP-AES, ICP-MS and XRF in geological samples[J]. Gold, 2014, 35(9): 78-81.

[34]

黄元. XRF-ICP-AES法测定土壤中的主次元素[J]. 化学分析计量, 2015, 24(6): 73-76.

Huang Y. Determination of major and minor elements in soil by X-ray fluorescence spectrometry and inductively coupled plasma-atomic emission spectrometry[J]. Chemical Analysis and Meterage, 2015, 24(6): 73-76.

相似文献(共20条)

[1]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[2]

徐婷婷, 夏宁, 张波. 熔片制样-X射线荧光光谱法测定海洋沉积物样品中主次量组分. 岩矿测试, 2008, 27(1): 74-76.

[3]

孙可, 刘颖, 高博, 涂湘林, 曾文, 胡光黔, 傅家谟, 盛国英, 梁细荣. AG-MP-1M阴离子交换树脂分离-表面热电质谱法测定沉积物中的铅同位素组成. 岩矿测试, 2008, 27(1): 9-11.

[4]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[5]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[6]

余宇, 刘江斌, 党亮, 陈月源, 曹成东, 谈建安, 赵峰. X射线荧光光谱法同时测定石灰石中主次痕量组分. 岩矿测试, 2008, 27(2): 149-150.

[7]

张剑, 胡高伟, 刁少波, 陈强, 岳英杰, 业渝光. 多孔介质中水合物的热物理参数测量. 岩矿测试, 2008, 27(3): 165-168.

[8]

王芙云, 任向阳, 袁翠菊. X射线荧光光谱法快速分析镁质耐火材料中硅铝铁钛钙镁. 岩矿测试, 2008, 27(3): 232-234.

[9]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[10]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[11]

王昌燧, 毛振伟, 朱铁权, 何伟, 贾兴和, 张茂林, 黄宇营. 斯里兰卡曼泰遗址出土青花瓷的化学成分分析及产地初探. 岩矿测试, 2008, 27(1): 37-40.

[12]

王军学. X射线荧光光谱法测定锌铝硅合金中硅和铁. 岩矿测试, 2008, 27(1): 77-78.

[13]

李小莉. X射线荧光光谱法测定铁矿中铁等多种元素. 岩矿测试, 2008, 27(3): 229-231.

[14]

刘玉纯, 徐厚玲, 吴永斌, 梁述廷. X射线荧光光谱法测定生物样品中氯硫氮磷钾铜锌溴. 岩矿测试, 2008, 27(1): 41-44.

[15]

钟代果. 铝土矿中主成分的X射线荧光光谱分析. 岩矿测试, 2008, 27(1): 71-73.

[16]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[17]

张莉娟, 刘义博, 李小莉, 徐铁民. 超细粉末压片法-X射线荧光光谱测定水系沉积物和土壤中的主量元素. 岩矿测试, 2014, 33(4): 517-522.

[18]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[19]

尹静, 黄睿涛. 粉末压片制样-X射线荧光光谱法测定铁矿石中锌砷锰. 岩矿测试, 2011, 30(4): 491-493.

[20]

魏峰, 沈小明, 陈海英, 沈加林. 土壤和沉积物中22种有机氯农药和8种多氯联苯的气相色谱分析. 岩矿测试, 2013, 32(6): 952-958.

计量
  • PDF下载量(21)
  • 文章访问量(547)
  • HTML全文浏览量(162)
  • 被引次数(0)
目录

Figures And Tables

X射线荧光光谱法测定土壤和沉积物中的锰

陈春霏, 洪欣, 王晓飞, 苏荣, 梁晓曦, 何宇, 卢秋, 田艳