【引用本文】 王岚, 杨丽芳, 谭西早, 等. 膜去溶-电感耦合等离子体质谱法测定环境地质样品中的镉[J]. 岩矿测试, 2017, 36(6): 574-580. doi: 10.15898/j.cnki.11-2131/td.201703130032
WANG Lan, YANG Li-fang, TAN Xi-zao, et al. Determination of Cd in Environmental Geological Samples by Inductively Coupled Plasma-Mass Spectrometry with Membrane Desolvation[J]. Rock and Mineral Analysis, 2017, 36(6): 574-580. doi: 10.15898/j.cnki.11-2131/td.201703130032

膜去溶-电感耦合等离子体质谱法测定环境地质样品中的镉

国家核安保技术中心, 北京 102401

收稿日期: 2017-03-13  修回日期: 2017-08-03  接受日期: 2017-08-14

基金项目: 中国地质调查局地质调查项目(DD20160095)

作者简介: 王岚, 博士, 高级工程师, 分析化学/地球化学专业。E-mail:wanglan437@163.com

Determination of Cd in Environmental Geological Samples by Inductively Coupled Plasma-Mass Spectrometry with Membrane Desolvation

State Nuclear Security Technology Center, Beijing 102401, China

Received Date: 2017-03-13
Revised Date: 2017-08-03
Accepted Date: 2017-08-14

摘要:应用电感耦合等离子体质谱法(ICP-MS)分析环境地质样品中的Cd时,Zr、Mo元素的氧化物和氢氧化物会对Cd造成严重干扰,导致结果有明显的偏差。针对此问题,本文建立了膜去溶-ICP-MS直接测定环境地质样品中微量Cd的分析方法,该方法可有效地消除Zr、Mo氧化物和氢氧化物对Cd的干扰,保证结果准确、可靠。膜去溶-ICP-MS相比于常规ICP-MS测定Cd的方法,可将Zr、Mo氧化物和氢氧化物对Cd的干扰降低到0.001%,检测灵敏度提高3.5倍左右。在给定条件下,Cd的检出限为0.28 ng/L,测定下限为2.2 ng/L,精密度(RSD,n=12)为2.2%。利用该方法分析20种岩石、土壤和沉积物国家标准物质的测定值与标准值相符,表明膜去溶-ICP-MS法直接测定环境地质样品中痕量或超痕量Cd时具有一定的应用潜力。同时,用该方法对2016年中核集团组织的实验室间两个比对样品中的Cd进行测定,稳健Z比分数分别为0.500和-0.964,Z的绝对值都小于2。

关键词: 膜去溶, 电感耦合等离子体质谱法, , 环境地质样品

Determination of Cd in Environmental Geological Samples by Inductively Coupled Plasma-Mass Spectrometry with Membrane Desolvation

KEY WORDS: membrane desolvation, Inductively Coupled Plasma-Mass Spectrometry, cadmium, environmental geological samples

Highlights

· Zr, Mo oxides and hydroxides have serious interference for the determination of Cd in environmental geological samples by ICP-MS.

· Membrane dissolvation can change wet aerosol which enter ICP-MS into a dry aerosol, reducing interference of the solvent for the plasma.

· Membrane dissolvation coupled with ICP-MS can directly and accurately determine Cd in the environmental geological samples. The method has a significant application value for direct determination of trace and ultramicro-trace Cd in environmental geological samples.

本文参考文献

[1]

Balmuri S R, Selvaraj U, Kumar V V, et al. Effect of surfactant in mitigating cadmium oxide nanoparticle toxicity:Implications for mitigating cadmium toxicity in environment[J].Environmental Research, 2017, 152: 141-149. doi: 10.1016/j.envres.2016.10.005

[2]

Eichler A, Tobler L, Eyrikh S, et al. Icecore based assessment of historical anthropogenic heavy metal (Cd, Cu, Sb, Zn) emissions in the Soviet Union[J]. Environmental Science & Technology, 2014, 48(5): 2635-2642.

[3]

Moritz B, Ulrich A, Rehmus A, et al. Accumulation of cadmium and uranium in arable soils in Switzerland[J].Environmental Pollution, 2017, 221: 85-93. doi: 10.1016/j.envpol.2016.11.035

[4]

Oliveira F M, Marchioni C A, Barros J A V, et al. Assessment of cadmium and iron adsorption in sediment, employing a flow injection analysis system with on line filtration and detection by flame atomic absorption spectrometry and thermospray flame furnace atomic absorption spectrometry[J].Analytica Chimica Acta, 2014, 809: 82-87. doi: 10.1016/j.aca.2013.11.048

[5]

Fırat M, Bakırdere S, Fındıkoglu S M, et al. Deter-mination of trace amount of cadmium using dispersive liquid-liquid microextraction-slotted quartz tube-flame atomic absorption spectrometry[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2017, 129(1): 37-41.

[6]

徐子优. 固体直接进样-石墨炉原子吸收光谱法测定土壤中镉元素[J]. 中国无机分析化学, 2013, 3(3): 8-12.

Xu Z Y. Determination of cadmium in soil by direct solid sample introduction-graphite furnace atomic absorption spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2013, 3(3): 8-12.

[7]

Wu Q H, Wu C X, Wang C, et al. Sensitive determination of cadmium in water, beverage and cereal samples by a novel liquid-phase microextraction coupled with flame atomic absorption spectrometry[J].Analytical Methods, 2011, 3: 210-216. doi: 10.1039/C0AY00524J

[8]

Wysocka I, Vassileva E. Determination of cadmium, copper, mercury, lead and zinc mass fractions in marine sediment by isotope dilution inductively coupled plasma mass spectrometry applied as a reference method[J]. Microchemical Journal, 2016, 18: 198-207.

[9]

Inagaki K, Takatsu A, Uchiumi A, et al. Determination of cadmium in sediment by isotope dilution inductively coupled plasma mass spectrometry using a co-precipitation separation technique[J].Journal of Analytical Atomic Spectrometry, 2001, 16: 1370-1374. doi: 10.1039/b106974h

[10]

Suzuki Y, Endo Y, Ogawa M, et al. Determination of sub-ppb cadmium in urine by solid-phase extraction and inductively coupled plasma-mass spectrometry[J].Analytical Sciences, 2008, 24(8): 1049-1052. doi: 10.2116/analsci.24.1049

[11]

何红蓼, 胡明月, 巩爱华, 等. 碘化物升华分离-电感耦合等离子体光谱法测定土壤和沉积物中砷、锑、铋、镉、锡[J]. 光谱学与光谱分析, 2008, 28(3): 663-666.

He H L, Hu M Y, Gong A H, et al. Determination of As, Sb, Bi, Cd and Sn in soils and sediments by inductively coupled plasma atomic emission spectrometry after sublimation separation as iodides[J]. Spectroscopy and Spectral Analysis, 2008, 28(3): 663-666.

[12]

Bagheri A, Behbahani M, Amini M M, et al. Simultane-ous separation and determination of trace amounts of Cd(Ⅱ) and Cu(Ⅱ) in environmental samples using novel diphenylcarbazide modified nanoporous silica[J].Talanta, 2012, 89: 455-461. doi: 10.1016/j.talanta.2011.12.062

[13]

周丽萍, 李中玺. 王水提取-电感耦合等离子体质谱法同时测定地质样品中微量银、镉、铋[J]. 分析试验室, 2005, 24(9): 20-25.

Zhou L P, Li Z X. Determination of silver, cadmium and bismuth in geological samples by inductively coupled plasma mass spectrometry with aqua regia treatment[J]. Chinese Journal of Analysis Laboratory, 2005, 24(9): 20-25.

[14]

徐娟, 胡兆初, 刘勇胜, 等. 膜去溶-电感耦合等离子质谱测定21种国际地质标样中的银[J]. 分析化学, 2008, 31(11): 1493-1498. doi: 10.3321/j.issn:0253-3820.2008.11.008

Xu J, Hu Z C, Liu Y S, et al. Direct determination of Ag in 21 international geological reference materials by membrane desolvation-inductively coupled plasma-mass spectrometry[J].Chinese Journal of Analytical Chemistry, 2008, 31(11): 1493-1498. doi: 10.3321/j.issn:0253-3820.2008.11.008

[15]

韩国军, 伍星, 童坚, 等. 膜去溶-ICP-MS测定高纯CeO2中14种痕量稀土杂质分析方法研究[J]. 中国稀土学报, 2009, 27(1): 137-144.

Han G J, Wu X, Tong J, et al. Determination of 14 trace rare earth impurities in high-purity CeO2 by inductively coupled plasma mass spectrometry with membrane desolvation[J]. Journal of the Chinese Rare Earth Society, 2009, 27(1): 137-144.

[16]

刘妹, 程志中, 顾铁新, 等. 矿石与钼精矿成分分析标准物质研制[J]. 岩矿测试, 2013, 32(6): 944-951.

Liu M, Cheng Z Z, Gu T X, et al. Preparation of molybdenum ore and molybdenum concentrate reference materials[J]. Rock and Mineral Analysis, 2013, 32(6): 944-951.

[17]

李自强, 李小英, 钟琦, 等. 电感耦合等离子体质谱法测定土壤重金属普查样品中铬铜镉铅的关键环节研究[J]. 岩矿测试, 2016, 35(1): 37-41.

Li Z Q, Li X Y, Zhong Q, et al. Determination of Cr, Cu, Cd and Pb in soil samples by inductively coupled plasma-mass spectrometry for an investigation of heavy metal pollution[J]. Rock and Mineral Analysis, 2016, 35(1): 37-41.

[18]

李力争, 韩张雄, 王龙山, 等. 电感耦合等离子体质谱法测定地球化学样品中镉[J]. 分析试验室, 2016, 31(12): 69-72.

Li L Z, Han Z X, Wang L S, et al. Determination of Cd in geochemical samples by inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2016, 31(12): 69-72.

[19]

Guo W, Hu S H, Xie Y F, et al. Direct determination of trace cadmium in environmental samples by dynamic reaction cell inductively coupled mass spectrometry[J].Chemosphere, 2010, 81(11): 1463-1468. doi: 10.1016/j.chemosphere.2010.08.056

[20]

孙朝阳, 董利明, 贺颖婷, 等. 电感耦合等离子体质谱法测定地质样品中钪镓锗铟镉铊时的干扰及其消除方法[J]. 理化检验(化学分册), 2016, 52(9): 1026-1030.

Sun C Y, Dong L M, He Y T, et al. Elimination of interferences in ICP-MS determination of Sc, Ga, Ge, In, Cd and Tl in geological sample[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2016, 52(9): 1026-1030.

相似文献(共19条)

[1]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[2]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[3]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[4]

陈贺海, 鲍惠君, 付冉冉, 应海松, 芦春梅, 金献忠, 肖达辉. 微波消解-电感耦合等离子体质谱法测定铁矿石中铬砷镉汞铅. 岩矿测试, 2012, 31(2): 234-240.

[5]

许春雪, 王亚平, 王苏明, 安子怡, 代阿芳, 袁建, 朱家平. 电感耦合等离子体质谱法测定地下水中镉的不确定度评定. 岩矿测试, 2010, 29(5): 607-612.

[6]

郝原芳, 刘新, 宋丽华, 李丽君, 徐英奎. 电感耦合等离子体质谱法测定铅合金中的微量杂质元素镉和锡. 岩矿测试, 2016, 35(4): 378-383. doi: 10.15898/j.cnki.11-2131/td.2016.04.007

[7]

杨红霞, 何红蓼, 李冰, 倪哲明. 环境样品中痕量元素的化学形态分析Ⅱ.砷汞镉锡铅硒铬的形态分析. 岩矿测试, 2005, (2): 118-128.

[8]

王君玉, 吴葆存, 李志伟, 韩敏, 钟莅湘. 敞口酸溶-电感耦合等离子体质谱法同时测定地质样品中45个元素. 岩矿测试, 2011, 30(4): 440-445.

[9]

李自强, 李小英, 钟琦, 苏文峰, 诸堃. 电感耦合等离子体质谱法测定土壤重金属普查样品中铬铜镉铅的关键环节研究. 岩矿测试, 2016, 35(1): 37-41. doi: 10.15898/j.cnki.11-2131/td.2016.01.007

[10]

张保科, 温宏利, 王蕾, 马生凤, 巩爱华. 封闭压力酸溶-盐酸提取-电感耦合等离子体质谱法测定地质样品中的多元素. 岩矿测试, 2011, 30(6): 737-744.

[11]

邓长生, 李盛富, 张建梅, 王明力, 勒孚河, 牛芳红. 常压酸溶-电感耦合等离子体质谱法测定地球化学勘查样品中的铌钽. 岩矿测试, 2018, 37(4): 364-370. doi: 10.15898/j.cnki.11-2131/td.201802060016

[12]

杨红霞, 张惠娟, 高津旭, 刘崴, 李冰. 胁迫时间和胁迫浓度对超积累植物印度芥菜细胞中镉分布的影响. 岩矿测试, 2014, 33(5): 723-729.

[13]

胡德新, 武素茹, 刘跃勇, 王虹, 王向东, 李权斌, 谷松海. 改进BCR法-电感耦合等离子体发射光谱法测定矿产品堆场土壤中镉砷铅的化学形态. 岩矿测试, 2014, 33(3): 374-378.

[14]

李玉双, 孙铁珩, 孙丽娜, 李昕馨. 根际环境锌镉镍的形态变化与植物有效性. 岩矿测试, 2007, 26(4): 257-263.

[15]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[16]

张保科, 王蕾, 马生凤, 温宏利, 巩爱华. 电感耦合等离子体质谱法测定地质样品中铜锌铕钆铽的干扰及校正. 岩矿测试, 2012, 31(2): 253-257.

[17]

孙德忠, 何红蓼. 封闭酸溶-等离子体质谱法分析超细粒度地质样品中42个元素. 岩矿测试, 2007, 26(1): 21-25.

[18]

沈宇, 张尼, 高小红, 李皓, 马怡飞. 微波消解电感耦合等离子体质谱法测定地球化学样品中钒铬镍锗砷. 岩矿测试, 2014, (5): 649-654.

[19]

王琳, 唐志中, 来新泽, 连文莉, 胡家祯, 周岚. 混合吸附剂分离富集-电感耦合等离子体质谱法测定地质样品中铂钯金. 岩矿测试, 2013, 32(3): 420-426.

计量
  • PDF下载量(40)
  • 文章访问量(650)
  • HTML全文浏览量(234)
  • 被引次数(0)
目录

Figures And Tables

膜去溶-电感耦合等离子体质谱法测定环境地质样品中的镉

王岚, 杨丽芳, 谭西早, 武朝辉