【引用本文】 吴刚, 张兆法, 宋凡, 等. 石墨消解仪-自动定氮法测定植物果实中的全氮[J]. 岩矿测试, 2020, 39(2): 311-317. doi: 10.15898/j.cnki.11-2131/td.201903260037
WU Gang, ZHANG Zhao-fa, SONG Fan, et al. Determination of Total Nitrogen in Plant Fruits by Graphite Digestion Apparatus and Automatic Azotometer[J]. Rock and Mineral Analysis, 2020, 39(2): 311-317. doi: 10.15898/j.cnki.11-2131/td.201903260037

石墨消解仪-自动定氮法测定植物果实中的全氮

河北省地质实验测试中心, 河北 保定 071000

收稿日期: 2019-03-26  修回日期: 2019-06-04  接受日期: 2019-07-16

基金项目: 河北省自然科学基金项目“京津冀偏远山区大气金属沉降监测的地衣筛选”(C2014201032)

作者简介: 吴刚, 硕士, 化学工程专业。E-mail:287665324@qq.com

通信作者: 张兆法, 高级工程师, 化学师资专业。E-mail:leddier@tom.com

Determination of Total Nitrogen in Plant Fruits by Graphite Digestion Apparatus and Automatic Azotometer

Hebei Research Center for Geoanalysis, Baoding 071000, China

Corresponding author: ZHANG Zhao-fa, leddier@tom.com

Received Date: 2019-03-26
Revised Date: 2019-06-04
Accepted Date: 2019-07-16

摘要:通过测定植物果实中的氮元素含量,能够掌握植物生长状况,为提高优质果实的产量提供重要信息。目前分析测试植物果实中全氮的方法为传统凯氏定氮法,主要步骤为消解、蒸馏和滴定,消解时间约90min,蒸馏滴定时间约10~20min,分析测定过程较为繁琐,容易产生人为误差,不适于大批量植物果实样品的分析检测。为了缩短植物果实样品全氮的分析测定时间、提高工作效率,避免人为误差以及解决消解过程中样品飞溅和白烟逸出的问题,本文使用石墨消解仪对样品进行消解,加入浓硫酸和催化剂并加盖回流塞,使用全自动定氮仪进行分析测定,消解过程中样品不发生损失,白烟不逸出,消解时间约50min,蒸馏时间约3min,试剂消耗量小,相对误差和相对标准偏差均小于5%。本文建立的方法能够满足实验室快速、准确检测大批量植物样品中全氮的分析需求,已在中国地质调查局地调招标项目和河北省农用地土壤污染状况详查项目中得到了应用。

关键词: 植物果实, 全氮, 浓硫酸, 石墨消解仪, 凯氏定氮法, 自动滴定

要点

(1) 解决了植物果实全氮分析前处理中存在的样品飞溅、白烟逸出等问题。

(2) 将石墨消解仪消解和全自动定氮仪分析测定有机地结合起来。

(3) 应用于植物果实全氮分析的实际工作中,提高了工作效率。

Determination of Total Nitrogen in Plant Fruits by Graphite Digestion Apparatus and Automatic Azotometer

ABSTRACT

BACKGROUND:

By measuring the nitrogen content in plant fruits, the growth status of plants can be grasped and important information for improving the yield of high-quality fruits can be provided. At present, the traditional Kjeldahl method is used to determine nitrogen in plant fruits. The main steps are digestion, distillation and titration. The digestion time of traditional method is 90 minutes, and the titration and distillation time is 10-20 minutes. The determination process is complicated and produces errors, which is not suitable for the analysis of large amounts of plant fruits.

OBJECTIVES:

To shorten the analysis and determination time of total nitrogen in plant fruit samples, improve work efficiency, avoid artificial errors, and solve the problems of sample splashing and white smoke escaping during digestion.

METHODS:

A graphite digestion instrument was used for digestion. Concentrated sulfuric acid and a catalyst were added, the reflux plug was capped, and an automatic nitrogen determination instrument was used for analysis.

RESULTS:

The sample did not splash and the white smoke did not escape. The digestion time was 50 minutes and the distillation time was 3 minutes. The reagent consumption was reduced by 2mL. The relative error and relative standard deviation were less than 5%.

CONCLUSIONS:

The established method meets the needs of the laboratory to quickly and accurately detect total nitrogen in large amounts of plant samples. It has been applied in the detailed survey project of the China geological survey bidding project and the detailed investigation of the soil pollution status of agricultural land in Hebei Province.

KEY WORDS: plant fruit, total nitrogen, concentrated sulfuric acid, graphite digestion apparatus, Kjeldahl method, automatic titration

HIGHLIGHTS

(1) The problems of sample splash and white smoke escape during the pretreatment of total nitrogen analysis of plant fruits were solved.

(2) The graphite digestion apparatus was combined with the automatic azotometer organically.

(3) The application of this method in the analysis of total nitrogen in plant fruits has improved work efficiency.

本文参考文献

[1]

赵平, 孙谷畴, 彭少麟, 等. 植物氮素营养的生理生态学研究[J]. 生态科学, 1998, (2): 39-44.

Zhao P, Sun G C, Peng S L, et al. Ecophysiological research on nitrogen nutrition of plant[J]. Ecologic Science, 1998, (2): 39-44.

[2]

张敬敏, 桑茂鹏, 朱哲, 等. 植物对氨基酸的吸收研究进展[J]. 氨基酸和生物资源, 2013, 35(2): 19-22.

Zhang J M, Sang M P, Zhu Z, et al. Progress on the amino acid absorption of plant[J]. Amino Acids and Biotic Resources, 2013, 35(2): 19-22.

[3]

杨成, 贺华中, 罗绪强, 等. 大气污染影响下凯里植物氮、硫含量分析[J]. 环境监测管理与技术, 2012, 24(3): 52-55. doi: 10.3969/j.issn.1006-2009.2012.03.011

Yang C, He H Z, Luo X Q, et al. Analysis on nitrogen and sulphur contents in plant leaves under air pollution in Kaili, Guizhou[J].The Administration and Technique of Environmental Monitoring, 2012, 24(3): 52-55. doi: 10.3969/j.issn.1006-2009.2012.03.011

[4]

周显骥. 巨峰葡萄施氮技术研究[J]. 湖南农业大学学报, 1999, (3): 188-190.

Zhou X J. Studies on application of nitrogen to Jufeng grape[J]. Journal of Hunan Agricultural University, 1999, (3): 188-190.

[5]

蒋万峰, 崔永峰, 张卫东, 等. 无核白葡萄叶内矿质元素含量年生长季内的变化[J]. 西北农林科技大学学报(自然科学版), 2005, (8): 91-95. doi: 10.3321/j.issn:1671-9387.2005.08.019

Jiang W F, Cui Y F, Zhang W D, et al. Annual changes of mineral elements in foliar of thompsons seedless[J].Journal of Northwest Agriculture and Forest University (Natural Science Edition), 2005, (8): 91-95. doi: 10.3321/j.issn:1671-9387.2005.08.019

[6]

武丽艳, 郑翼腾, 吴勇, 等. 凯氏定氮装置的改进[J]. 化学通报, 2008, 71(2): 158-160.

Wu L Y, Zheng Y T, Wu Y, et al. Improvements on the equipment of Kjeldahl method[J]. Chemistry Bulletin, 2008, 71(2): 158-160.

[7]

王雅. 蛋白质测定实验的研究[J]. 实验室研究与探索, 2005, (4): 58-59. doi: 10.3969/j.issn.1006-7167.2005.04.021

Wang Y. Study on protein determination experiment[J].Research and Exploration in Laboratory, 2005, (4): 58-59. doi: 10.3969/j.issn.1006-7167.2005.04.021

[8]

郭颖娜, 孙卫. 蛋白质含量测定方法的比较[J]. 河北化工, 2008, (4): 36-37. doi: 10.3969/j.issn.1003-5059.2008.04.015

Guo Y N, Sun W. Comparison of methods for determination of protein content[J].Hebei Chemical Industry, 2008, (4): 36-37. doi: 10.3969/j.issn.1003-5059.2008.04.015

[9]

罗小芬. 浅谈凯氏定氮法测定蛋白质准确度的操作技巧及关键点[J]. 现代食品, 2017, (19): 99-100.

Luo X F. Talking about the operation skills and key points of determining protein accuracy by Kjeldahl method[J]. Modern Food, 2017, (19): 99-100.

[10]

Jung S, Rickert D A, Deak N A, et al. Comparison of Kjeldahl and Dumas methods for determining protein contents of soybean products[J].Journal of the American Oil Chemists' Society, 2003, 80(12): 1169-1173. doi: 10.1007/s11746-003-0837-3

[11]

张泽泉, 罗翠婷, 李孔寿, 等. 凯氏定氮法蛋白质测定的改进探讨[J]. 海峡预防医学杂志, 2017, 23(1): 64-66.

Zhang Z Q, Luo C T, Li K S, et al. Modification of protein determination by Kjeldahl method[J]. Strait Journal of Preventive Medicine, 2017, 23(1): 64-66.

[12]

刘正, 刘亚兵, 张进, 等. 乳及乳制品中蛋白质含量的测定[J]. 农业科技与信息, 2014, (7): 24-25. doi: 10.3969/j.issn.1003-6997.2014.07.020

Liu Z, Liu Y B, Zhang J, et al. Determination of protein content in dairy products and dairy products[J].Agricultural Science-Technology and Information, 2014, (7): 24-25. doi: 10.3969/j.issn.1003-6997.2014.07.020

[13]

曾庆庭. 半微量凯氏定氮法测定地球化学样品中全氮时的影响因素及消除方法[J]. 广东化工, 2018, 45(12): 225-226. doi: 10.3969/j.issn.1007-1865.2018.12.100

Zeng Q T. The influence factors and elimination methods of the determination of nitrogen in geochemical samples by semi-micro Kjeldahl method[J].Guangdong Chemical Industry, 2018, 45(12): 225-226. doi: 10.3969/j.issn.1007-1865.2018.12.100

[14]

Daun J K, Declercq D R. Comparison of combustion and Kjeldahl methods for determination of nitrogen in oilseeds[J].Journal of the American Oil Chemists' Society, 1994, 71(10): 1069-1072. doi: 10.1007/BF02675898

[15]

白金峰, 胡外英, 张勤, 等. 半微量凯氏法测定土壤全氮量的不确定度评定[J]. 岩矿测试, 2007, 26(1): 40-44. doi: 10.3969/j.issn.0254-5357.2007.01.011

Bai J F, Hu W Y, Zhang Q, et al. Uncertainty evaluation of measurement results for the determination of total nitrogen in soil samples by semimicro Kjeldahl method[J]. Rock and Mineral Analysis, 2007, 26(1): 40-44. doi: 10.3969/j.issn.0254-5357.2007.01.011

[16]

胡子峰. 凯氏定氮仪原理和校准的方法[J]. 上海计量测试, 2011, 38(3): 49-50. doi: 10.3969/j.issn.1673-2235.2011.03.015

Hu Z F. Principle and calibration method of Kjeldahl nitrogen determiner[J].Shanghai Measurement and Testing, 2011, 38(3): 49-50. doi: 10.3969/j.issn.1673-2235.2011.03.015

[17]

李宇庆, 陈玲, 赵建夫, 等. 土壤全氮测定方法的比较[J]. 广州环境科学, 2006, 21(3): 28-29.

Li Y Q, Chen L, Zhao J F, et al. Comparison of methods for determining total nitrogen in soil[J]. Guangzhou Environmental Sciences, 2006, 21(3): 28-29.

[18]

刘广东, 田翠芳, 王雅菁, 等. 石墨消解仪在测定土壤中铬的应用研究[J]. 广州化工, 2018, 46(13): 64-65. doi: 10.3969/j.issn.1001-9677.2018.13.022

Liu G D, Tian C F, Wang Y J, et al. Study on application of graphite dissociator in measurement of chromium in soil[J].Guangzhou Chemical Industry, 2018, 46(13): 64-65. doi: 10.3969/j.issn.1001-9677.2018.13.022

[19]

谢小玲, 李海锋, 李雪莹, 等. 土壤全氮半微量定氮法与自动定氮仪定氮法的比较分析[J]. 生态环境学报, 2012, 21(6): 1071-1074.

Xie X L, Li H F, Li X Y, et al. Comparison and analysis of semi-micro nitrogen determination method and automatic nitrogen determination method for soil total nitrogen[J]. Ecology and Environment Sciences, 2012, 21(6): 1071-1074.

[20]

郑贤光, 辛若竹. 全自动凯氏定氮仪测定化肥中的含氮量[J]. 化学分析计量, 2014, 23(5): 41-43. doi: 10.3969/j.issn.1008-6145.2014.05.014

Zheng X G, Xin R Z. Determination of nitrogen content of fertilizer by automatic Kjeldahl apparatus[J].Chemical Analysis and Meterage, 2014, 23(5): 41-43. doi: 10.3969/j.issn.1008-6145.2014.05.014

[21]

徐新娟, 黄中文, 王伟, 等. 全自动凯氏定氮仪测定大豆蛋白质方法的研究[J]. 黑龙江农业科学, 2016, (2): 108-110.

Xu X J, Huang Z W, Wang W, et al. Study on the processing conditions of soybean protein sample with automatic Kjeldahl nitrogen determination apparatus[J]. Heilongjiang Agricultural Sciences, 2016, (2): 108-110.

[22]

于兆水, 胡外英, 张勤, 等. 多目标地球化学调查土壤样品中氮和碳的快速测定[J]. 岩矿测试, 2007, 26(3): 235-237. doi: 10.3969/j.issn.0254-5357.2007.03.015

Yu Z S, Hu W Y, Zhang Q, et al. Rapid determination of nitrogen and carbon in soil samples for the multi-purpose geochemical survey[J]. Rock and Mineral Analysis, 2007, 26(3): 235-237. doi: 10.3969/j.issn.0254-5357.2007.03.015

[23]

栾慧, 刘红, 高一娜, 等. 土壤速效氮测定方法的改进[J]. 湖南农业科学, 2017, (3): 88-89.

Luan H, Liu H, Gao Y N, et al. Study on the determination method of soil alkali hydrolysis nitrogen[J]. Hunan Agricultural Sciences, 2017, (3): 88-89.

[24]

杨娜, 董迈青, 谢海东, 等. 应用响应曲面法优化凯氏定氮法的消解条件[J]. 岩矿测试, 2014, 33(1): 40-43. doi: 10.3969/j.issn.0254-5357.2014.01.008

Yang N, Dong M Q, Xie H D, et al. Optimization of digestion conditions in the Kjeldahl method for nitrogen analysis using response surface methodology[J]. Rock and Mineral Analysis, 2014, 33(1): 40-43. doi: 10.3969/j.issn.0254-5357.2014.01.008

[25]

袁静宇. 凯氏定氮法测定玉米淀粉蛋白质含量最佳消化温度的摸索[J]. 粮食与饲料工业, 2013, (11): 25-27.

Yuan J Y. Optimum digestion temperature for determina-tion of protein content by Kjeldahl method[J]. Cereal and Feed Industry, 2013, (11): 25-27.

[26]

陈春霏, 付洁, 梁鹏, 等. 土壤中全氮分析方法的研究进展[J]. 中国环境监测, 2018, 34(1): 112-119.

Chen C F, Fu J, Liang P, et al. Research progress on analytical methods for total nitrogen in soil[J]. Environmental Monitoring in China, 2018, 34(1): 112-119.

[27]

李玉华, 刘红, 陈燕芹, 等. 自动电位滴定法测定煤中氮[J]. 贵州工程应用技术学院学报, 2015, 33(6): 149-151. doi: 10.3969/j.issn.1673-7059.2015.06.026

Li Y H, Liu H, Chen Y Q, et al. Automatic potentiometric titration method for the determination of nitrogen element in coal[J].Journal of Guizhou University of Engineering Science, 2015, 33(6): 149-151. doi: 10.3969/j.issn.1673-7059.2015.06.026

[28]

李杉杉. 凯氏定氮法测定蛋白质的方法分析[J]. 现代食品, 2018, (21): 140-142.

Li S S. Analysis the methods of protein determination by Kjeldahl method[J]. Modern Food, 2018, (21): 140-142.

[29]

李海锋, 李雪莹, 袁红梅, 等. 用全自动凯氏定氮仪测定肥料中总氮含量方法探讨[J]. 广州化工, 2018, 46(10): 87-89. doi: 10.3969/j.issn.1001-9677.2018.10.029

Li H F, Li X Y, Yuan H M, et al. Determination of total nitrogen content in fertilizer by full automatic Kjeldahl nitrogen meter[J].Guangzhou Chemical Industry, 2018, 46(10): 87-89. doi: 10.3969/j.issn.1001-9677.2018.10.029

[30]

马怡飞, 张尼, 魏增, 等. 振荡交换-抽滤淋洗结合凯氏定氮法快速测定土壤中的阳离子交换量[J]. 岩矿测试, 2019, 38(1): 129-135.

Ma Y F, Zhang N, Wei Z, et al. Rapid determination of soil cation exchange capacity by automatic Kjeldahl analyzer after oscillating exchange and suction filtration[J]. Rock and Mineral Analysis, 2019, 38(1): 129-135.

[31]

谌国莲, 徐小艳. 一种新型半微量凯氏定氮仪在本科实验教学中的开发应用[J]. 实验室科学, 2018, 21(6): 171-174. doi: 10.3969/j.issn.1672-4305.2018.06.046

Chen G L, Xu X Y. Development and application of a new semi-micro Kjeldahl nitrogen-fixation instrument in undergraduate experimental teaching[J].Laboratory Science, 2018, 21(6): 171-174. doi: 10.3969/j.issn.1672-4305.2018.06.046

相似文献(共19条)

[1]

杨娜, 董迈青, 谢海东, 邢谦. 应用响应曲面法优化凯氏定氮法的消解条件. 岩矿测试, 2014, 33(1): 40-43.

[2]

胡外英, 张勤, 周建辉, 白金峰. 半微量凯氏法测定土壤全氮量的不确定度评定. 岩矿测试, 2007, 26(1): 40-44.

[3]

马怡飞, 张尼, 魏增, 高文旭, 王奎. 振荡交换-抽滤淋洗结合凯氏定氮法快速测定土壤中的阳离子交换量. 岩矿测试, 2019, 38(1): 129-135. doi: 10.15898/j.cnki.11-2131/td.201712110191

[4]

廖海平, 王艳, 应海松. 微波溶样-自动电位滴定法测定铁矿石中全铁量. 岩矿测试, 2007, 26(5): 413-415.

[5]

赵怀颖, 温宏利, 夏月莲, 巩爱华, 马生凤. 无汞重铬酸钾-自动电位滴定法准确测定矿石中的全铁含量. 岩矿测试, 2012, 31(3): 473-478.

[6]

赵文杰, 马明, 张珂, 李艳香, 侯明兰, 张玉强. 自动电位滴定仪应用于地下水六项指标的连续滴定. 岩矿测试, 2018, 37(5): 580-585. doi: 10.15898/j.cnki.11-2131/td.201711060176

[7]

王玉功, 王华, 刘建军, 余志峰. 沙棘树干茎流液中总氮总磷联合消解的测定方法. 岩矿测试, 2014, 33(5): 665-669.

[8]

王兵, 高丰蕾, 杨佩华, 孙承君, 韩彬. 自动电位滴定仪应用于测定海洋沉积物中有机碳的可行性研究. 岩矿测试, 2016, 35(4): 402-408. doi: 10.15898/j.cnki.11-2131/td.2016.04.011

[9]

黄国鑫, 高云鹤, Howard Fallowfield, Huade Guan, 刘菲. 联合脱氮法用于硝酸盐污染地下水修复的机理研究. 岩矿测试, 2012, 31(5): 855-862.

[10]

徐丽, 邢蓝田, 王鑫, 李中平, 毛俊丽. 元素分析仪-同位素比值质谱测量碳氮同位素比值最佳反应温度和进样量的确定. 岩矿测试, 2018, 37(1): 15-20. doi: 10.15898/j.cnki.11-2131/td.201701130005

[11]

周采菊, 郑衍生. 全热解石墨管石墨炉原子吸收法测定痕量锶. 岩矿测试, 1992, (3): 236-239.

[12]

刘玉纯, 胡浩, 梁述廷. X射线荧光光谱法同时测定土壤样品中碳氮等多元素. 岩矿测试, 2004, (2): 102-108.

[13]

毛文剑, 梁云生, 杨毅. 硫酸亚铁铵滴定法快速测定铬铁矿中铬. 岩矿测试, 2007, 26(1): 73-74.

[14]

肖承坤. 硫酸肼还原-钒酸铵滴定法测定尾矿中钼. 岩矿测试, 2007, 26(3): 243-244.

[15]

陈江, 姚玉鑫, 费勇, 姚建民, 吴杰. 微波消解等离子体发射光谱和石墨炉原子吸收光谱法联合测定土壤中多元素. 岩矿测试, 2009, 28(1): 25-28.

[16]

唐妙红, 彭玉玲. 硫酸亚铁铵氧化还原滴定法测定钠硝石中硝酸根的含量. 岩矿测试, 2007, 26(2): 165-166.

[17]

马德起, 谷松海, 张国胜, 吴瑶, 韩娟. 自动电位滴定测定锰矿石中锰的方法研究. 岩矿测试, 2013, 32(4): 595-599.

[18]

赵怀颖, 吕庆斌, 巩爱华, 孙红宾, 马新荣. 自动电位滴定技术精确测定铜矿石中高含量铜的方法研究. 岩矿测试, 2015, 34(6): 672-677. doi: 10.15898/j.cnki.11-2131/td.2015.06.011

[19]

宋艳合, 卿敏, 杨理勤, 李文良. 金标样定值中全金量的湿法分析. 岩矿测试, 2004, (1): 75-76.

计量
  • PDF下载量(19)
  • 文章访问量(234)
  • HTML全文浏览量(47)
  • 被引次数(0)
目录

Figures And Tables

石墨消解仪-自动定氮法测定植物果实中的全氮

吴刚, 张兆法, 宋凡, 刘显, 马会春, 庞雪敏, 张佳林, 柳燕云