【引用本文】 曾广圣, 欧乐明, . X射线衍射-扫描电镜等技术研究秘鲁铜硫矿石选矿工艺矿物学特征[J]. 岩矿测试, 2019, 38(2): 160-168. doi: 10.15898/j.cnki.11-2131/td.201804130042
ZENG Guang-sheng, OU Le-ming. Study on Mineralogical Characteristics of Peru Copper-Sulphur Ore Dressing Process by X-ray Diffraction and Scanning Electron Microscope[J]. Rock and Mineral Analysis, 2019, 38(2): 160-168. doi: 10.15898/j.cnki.11-2131/td.201804130042

X射线衍射-扫描电镜等技术研究秘鲁铜硫矿石选矿工艺矿物学特征

中南大学资源加工与生物工程学院, 湖南 长沙 410083

收稿日期: 2018-04-13  修回日期: 2018-10-16  接受日期: 2019-01-04

基金项目: 国家重点基础研究发展计划(973)项目(2014CB643402);国家自然科学基金项目(51674291)

作者简介: 曾广圣, 硕士, 主要从事低碱度铜硫分离试验研究。E-mail:1976530700@qq.com

通信作者: 欧乐明, 博士, 教授, 主要从事微细粒复杂矿物分选理论、工艺与设备和矿产资源综合利用与环保研究。E-mail:olm@csu.edu.cn

Study on Mineralogical Characteristics of Peru Copper-Sulphur Ore Dressing Process by X-ray Diffraction and Scanning Electron Microscope

School of Minerals Processing and Bio-Engineering, Central South University, Changsha 410083, China

Corresponding author: OU Le-ming, olm@csu.edu.cn

Received Date: 2018-04-13
Revised Date: 2018-10-16
Accepted Date: 2019-01-04

摘要:秘鲁铜硫矿石的主要回收对象是铜和硫矿物,由于铜矿物嵌布复杂、粒度过细以及与各种脉石矿物或金属矿物交生关系紧密,利用传统工艺矿物学研究方法如化学分析、光学显微镜检测等较难准确定量其工艺矿物学参数。本文采用化学分析、X射线衍射、扫描电镜、偏光显微镜及矿物参数自动分析系统(MLA)等技术手段,研究秘鲁铜硫矿石的化学成分、矿物组成和主要矿物的嵌布特征、粒度分布及单体解离特性等,并对影响选矿指标的主要矿物学因素进行分析。结果表明:矿石中主要元素为Cu(0.65%)和S(9.53%)。矿石中黄铁矿(16.57%)含量较高,形态较为规则,与其他矿物之间的交生关系相对简单,粒度普遍偏粗,其中粒径大于0.30mm的黄铁矿占95.06%。铜矿物主要以不规则粒状、皮壳状、网脉状、纤维状、尘粒状、斑点状分布于脉石中或与黄铁矿、闪锌矿、磁铁矿等金属矿物交生紧密,粒度极不均匀,使得铜矿物解离难度加大,且矿石中云母(12.51%)、绿泥石(3.74%)、滑石(3.34%)、高岭石、蒙脱石(3.59%)等黏土质矿物含量较高,在磨矿过程中易发生泥化从而恶化分选环境。根据该类型矿石的工艺矿物学特性,本文建议采用"粗磨-部分优先浮铜-铜硫混浮-混合精矿再磨再选分离"的工艺流程,可得到质量高的铜、硫精矿。

关键词: 矿物参数自动分析系统, 铜硫矿石, 工艺矿物学, 黏土矿物, 扫描电镜

要点

(1) 采用矿物自动分析系统对秘鲁铜硫矿进行系统的工艺矿物学研究。

(2) 铜矿物与黏土质矿物及各种金属矿物交生紧密增大了解离难度。

(3) 采用粗磨-部分优先浮铜-铜硫混浮-混合精矿再磨再选分离的工艺流程。

Study on Mineralogical Characteristics of Peru Copper-Sulphur Ore Dressing Process by X-ray Diffraction and Scanning Electron Microscope

ABSTRACT

BACKGROUND:

The main recovered minerals of copper sulfur ores in Peru were copper minerals and sulfur minerals. Due to the complexity of the embedded copper minerals, the superfine granularity of copper minerals and their close relationship with various gangue or metal minerals, the traditional process mineralogy research methods, such as chemical analysis and optical microscope detection, were difficult to quantify their process mineralogical parameters accurately.

OBJECTIVES:

To systematically investigate the process mineralogy of copper-sulfur ore in Peru.

METHODS:

By means of chemical analysis, X-ray Diffraction, Scanning Electron Microscope, Polarizing Microscope and Mineral Liberation Analysis, the systematic process mineralogy of copper-sulfur ores including chemical composition, mineral composition, occurrences of main minerals, particle size distribution and monomer dissociation characteristics were investigated, and the main mineralogical factors affecting the mineral dressing index were analyzed.

RESULTS:

The main elements in the ore were Cu (0.65%) and S (9.53%). The content of pyrite (16.57%) in the ore was relatively high, and its morphology was regular. The relationship between pyrite and other minerals was relatively simple, and the particle size was generally coarse. Pyrite particle size larger than 0.30mm accounted for 95.06%. However, the copper minerals were mainly irregular granular, shell shaped, reticulated, fibrous, dust-like, and speckled in gangue minerals or intersected with pyrite, sphalerite, magnetite and other metal minerals. The uneven particle size of copper minerals makes the dissociation of copper minerals more difficult. Moreover, the contents of clay minerals such as mica (12.51%), chlorite (3.74%), talc (3.34%), kaolinite and montmorillonite (3.59%) were abundant in the ore. During grinding, mudding occurred easily, which worsened the separation environment.

CONCLUSIONS:

The mineral processing flowsheet of coarse grinding-partially preferred floating copper-copper sulfur mixed flotation-mixed concentrate regrinding and separation can be used in copper-sulfur ore of Peru.

KEY WORDS: Mineral Liberation Analysis, copper-sulfur ore, process mineralogy, clay minerals, Scanning Electron Microscope

HIGHLIGHTS

(1) The systematic mineralogical study of copper-sulfur ores in Peru was conducted by Mineral Liberation Analysis.

(2) Copper minerals intersected closely with clay minerals and various metal minerals, which made them difficult to be dissociated.

(3) The process flowsheet of coarse grinding-partially preferred floating copper-copper sulfur mixed flotation-mixed concentrate regrinding and separation was adopted.

本文参考文献

[1]

贾木欣. 国外工艺矿物学进展及发展趋势[J]. 矿冶, 2007, 16(2): 95-99. doi: 10.3969/j.issn.1005-7854.2007.02.025

Jia M X. Process mineralogy progress and its trend abroad[J].Mining & Metallurgy, 2007, 16(2): 95-99. doi: 10.3969/j.issn.1005-7854.2007.02.025

[2]

肖仪武, 方明山, 付强, 等. 工艺矿物学研究的新技术与新理念[J]. 矿产保护与利用, 2018, (3): 49-54.

Xiao Y W, Fang M S, Fu Q, et al. New techniques and concepts in process mineralogy[J]. Conservation and Utilization of Mineral Resources, 2018, (3): 49-54.

[3]

Lotter N O, Baum W, Reeves S, et al. The business value of best practice process mineralogy[J].Minerals Engineering, 2018, 116: 226-238. doi: 10.1016/j.mineng.2017.05.008

[4]

王蓓, 单勇, 赵培樑, 等. 工艺矿物学对难选矿石评价的意义[J]. 矿产综合利用, 2015, (1): 58-60. doi: 10.3969/j.issn.1000-6532.2015.01.013

Wang B, Shan Y, Zhao P L, et al. The meaning of process mineralogy on appraising refractory minerals[J].Multipurpose Utilization of Mineral Resources, 2015, (1): 58-60. doi: 10.3969/j.issn.1000-6532.2015.01.013

[5]

刘榕鑫, 朱坤, 谢海云, 等. 云南斑岩型多金属金矿的嵌布特征及赋存状态研究[J]. 岩矿测试, 2018, 37(4): 404-410.

Liu R X, Zhu K, Xie H Y, et al. Study on the inlay characteristics and occurrences of Yunnan porphyry polymetallic gold deposits[J]. Rock and Mineral Analysis, 2018, 37(4): 404-410.

[6]

Lotter N O. Modern process mineralogy:An integrated multi-disciplined approach to flowsheeting[J].Minerals Engineering, 2011, 24(12): 1229-1237. doi: 10.1016/j.mineng.2011.03.004

[7]

Lotter N O, Kormos L J, Oliveira J, et al. Modern process mineralogy:Two case studies[J].Minerals Engineering, 2011, 24(7): 638-650. doi: 10.1016/j.mineng.2011.02.017

[8]

罗立群, 李金良, 曹佳宏, 等. 哈密铜镍矿工艺矿物学特性与影响选矿的因素[J]. 中国有色金属学报, 2014, 24(7): 1846-1855.

Luo L Q, Li J L, Cao J H, et al. Process mineralogy and factors affecting mineral processing for copper-nickel ore in Hami[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(7): 1846-1855.

[9]

陈秋虎, 解志锋. 安徽铜陵某铜矿工艺矿物学研究[J]. 矿冶, 2017, 26(1): 83-86. doi: 10.3969/j.issn.1005-7854.2017.01.020

Chen Q H, Xie Z F. Study on process mineralogy of a copper ore from Tongling, Anhui[J].Mining & Metallurgy, 2017, 26(1): 83-86. doi: 10.3969/j.issn.1005-7854.2017.01.020

[10]

谢海云, 叶群杰, 周平, 等. 云南思茅地区铜锌硫化矿工艺矿物学分析[J]. 岩矿测试, 2014, 33(3): 345-352. doi: 10.3969/j.issn.0254-5357.2014.03.011

Xie H Y, Ye Q J, Zhou P, et al. Process mineralogy analysis of copper-zinc sulfide ore from the Simao region, Yunnan Province[J]. Rock and Mineral Analysis, 2014, 33(3): 345-352. doi: 10.3969/j.issn.0254-5357.2014.03.011

[11]

高歌, 王艳. MLA自动检测技术在工艺矿物学研究中的应用[J]. 黄金, 2015, (10): 66-69. doi: 10.11792/hj201510015

Gao G, Wang Y. Application of MLA automatic technology in process mineralogy research[J].Gold, 2015, (10): 66-69. doi: 10.11792/hj201510015

[12]

高倩倩, 刘杨, 杨艳芳, 等. MLA与偏光显微镜在工艺矿物学研究中的应用对比[J]. 矿业工程, 2018, 16(4): 39-40.

Gao Q Q, Liu Y, Yang Y F, et al. The application comparison between MLA and polarizing microscope in process mineralogy study[J]. Mining Engineering, 2018, 16(4): 39-40.

[13]

唐志东, 李文博, 高鹏, 等. 朝阳钒钛磁铁矿工艺矿物学研究[J]. 东北大学学报(自然科学版), 2017, 38(12): 1769-1774. doi: 10.12068/j.issn.1005-3026.2017.12.021

Tang Z D, Li W B, Gao P, et al. Mineralogical study of vanadium titanium magnetite ore in Chaoyang[J].Journal of Northeastern University(Natural Science), 2017, 38(12): 1769-1774. doi: 10.12068/j.issn.1005-3026.2017.12.021

[14]

成岚, 李茂林, 黄光耀, 等. 某铅锌尾矿浓密机溢流的工艺矿物学分析[J]. 中国有色金属学报, 2015, (7): 1953-1960.

Cheng L, Li M L, Huang G Y, et al. Process mineralogy analysis of certain lead-zinc tailings thickener overflow[J]. The Chinese Journal of Nonferrous Metals, 2015, (7): 1953-1960.

[15]

Gottlieb P, Wilkie G, Sutherland D, et al. Using quan-titative electron microscopy for process mineralogy applications[J]. Journal of Metals, 2000, 52(4): 24-25.

[16]

Lewis D B. Scanning electron microscopy and X-ray microanalysis[J]. Transactions of the Institute of Materials Finishing, 1997, 70(4): 198-202.

[17]

胡海祥, 范作鹏, 牛桂强, 等. 焦家金矿选厂旋流器溢流产品工艺矿物学分析[J]. 岩矿测试, 2014, 33(4): 535-544. doi: 10.3969/j.issn.0254-5357.2014.04.014

Hu H X, Fan Z P, Niu G Q, et al. The mineralogy characteristics of overflow product from hydrocyclone in the Jiaojia glod mine[J]. Rock and Mineral Analysis, 2014, 33(4): 535-544. doi: 10.3969/j.issn.0254-5357.2014.04.014

[18]

王含, 周征宇, 钟倩, 等. 电子微探针-X射线衍射-扫描电镜研究老挝石岩石矿物学特征[J]. 岩矿测试, 2016, 35(1): 56-61.

Wang H, Zhou Z Y, Zhong Q, et al. Study on petrological and mineralogical characteristics of Laos stone by EPMA-XRD-SEM[J]. Rock and Mineral Analysis, 2016, 35(1): 56-61.

[19]

Gu Y. Automated scanning electron microscope based mineral liberation analysis an introduction to JKMRC/FEI mineral liberation analyser[J]. Journal of Minerals & Materials Characterization & Engineering, 2003, 2(1): 33-41.

[20]

Fandrich R, Gu Y, Burrows D, et al. Modern SEM-based mineral liberation analysis[J]. International Journal of Mineral Processing, 2007, 84(1): 310-320.

[21]

Gu Y, Schouwstra R P, Rule C, et al. The value of automated mineralogy[J]. Minerals Engineering, 2014, 58(4): 100-103.

[22]

苏秀珠, 黄志华, 衷水平, 等. 卡林型金矿石中金的赋存状态分析新方法[J]. 岩矿测试, 2013, 32(3): 474-482. doi: 10.3969/j.issn.0254-5357.2013.03.021

Su X Z, Huang Z H, Zhong S P, et al. New analysis method for glod occurrence in carlin-type glod ore[J]. Rock and Mineral Analysis, 2013, 32(3): 474-482. doi: 10.3969/j.issn.0254-5357.2013.03.021

[23]

谢海云, 李圆洪, 叶群杰, 等. 滇西铜多金属硫化矿的工艺矿物学特性[J]. 矿物岩石, 2015, 35(4): 17-22.

Xie H Y, Li Y H, Ye Q J, et al. Characteristics of processing mineralogy of polymetallic sulfide in West Yunnan[J]. Journal of Mineralogy and Petrology, 2015, 35(4): 17-22.

[24]

唐志东, 陈国岩, 曲孔辉, 等. 鞍钢东部尾矿工艺矿物学研究[J]. 金属矿山, 2018, (6): 109-113.

Tang Z D, Chen G Y, Qu K H, et al. Research on process mineralogy of eastern tailings in Ansteel[J]. Metal Mine, 2018, (6): 109-113.

[25]

周耀文, 文书明, 王伊杰, 等. 云南大屯锡粗精矿工艺矿物学研究[J]. 岩石矿物学杂志, 2017, 36(6): 779-784. doi: 10.3969/j.issn.1000-6524.2017.06.002

Zhou Y W, Wen S M, Wang Y J, et al. Process mineralogical research on the rough tin concentrate in Datun, Yunnan Province[J].Acta Petrologica et Mineralogica, 2017, 36(6): 779-784. doi: 10.3969/j.issn.1000-6524.2017.06.002

[26]

Nagle J F, Cognet P, Dupuy F G, et al. Structure of gel phase DPPC determined by X-ray diffraction[J].Chemistry and Physics of Lipids, 2019, 218: 168-177. doi: 10.1016/j.chemphyslip.2018.12.011

[27]

Fagundes A C F, Lopes L M, Antoniassi M, et al. Stru-ctural characterization of canine mammary tissue by X-ray diffraction[J].Radiation Physics and Chemistry, 2019, 155: 22-25. doi: 10.1016/j.radphyschem.2018.07.018

[28]

艾光华, 周源, 魏宗武, 等. 提高某难选铜矿石回收率的选矿新工艺研究[J]. 金属矿山, 2008, (11): 46-48. doi: 10.3321/j.issn:1001-1250.2008.11.014

Ai G H, Zhou Y, Wei Z W, et al. Study on the new beneficiation for improving the recovery of certain refractory copper ore[J].Metal Mine, 2008, (11): 46-48. doi: 10.3321/j.issn:1001-1250.2008.11.014

[29]

周玉才. 某难选低品位铜硫矿选矿工艺研究[J]. 有色矿冶, 2013, (2): 31-34. doi: 10.3969/j.issn.1007-967X.2013.02.012

Zhou Y C. Study on the mineral processing technology of a refractory low grade copper sulfideore[J].Nonferrous Mining and Metallurgy, 2013, (2): 31-34. doi: 10.3969/j.issn.1007-967X.2013.02.012

[30]

卫召, 孙伟, 张庆鹏, 等. 细粒硫化铜矿与易泥化钙镁矿物的浮选分离[J]. 有色金属工程, 2017, 7(4): 64-69. doi: 10.3969/j.issn.2095-1744.2017.04.014

Wei Z, Sun W, Zhang Q P, et al. Flotation separation of fine copper sulfide and easy-sliming[J].Nonferrous Metals Engineering, 2017, 7(4): 64-69. doi: 10.3969/j.issn.2095-1744.2017.04.014

相似文献(共20条)

[1]

谢海云, 叶群杰, 周平, 高利坤, 庄故章, 童雄. 云南思茅地区铜锌硫化矿工艺矿物学分析. 岩矿测试, 2014, 33(3): 350-357.

[2]

彭艳华, 彭光菊, 贾利攀, 周卫宁. 湖南宝山铅锌矿西部矿带银的工艺矿物学研究. 岩矿测试, 2013, 32(5): 729-737.

[3]

伍超群. 电子探针在工艺矿物学中的应用. 岩矿测试, 1994, (1): 45-48.

[4]

王含, 周征宇, 钟倩, 刘瑞婷, 刘琦, 李英博. 电子微探针-X射线衍射-扫描电镜研究老挝石岩石矿物学特征. 岩矿测试, 2016, 35(1): 56-61. doi: 10.15898/j.cnki.11-2131/td.2016.01.010

[5]

杜谷, 王坤阳, 冉敬, 王风玉, 潘忠习. 红外光谱/扫描电镜等现代大型仪器岩石矿物鉴定技术及其应用. 岩矿测试, 2014, 33(5): 625-633.

[6]

王坤阳, 杜谷, 杨玉杰, 董世涛, 喻晓林, 郭建威. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征. 岩矿测试, 2014, 33(5): 634-639.

[7]

王坤阳, 徐金沙, 饶华文, 裴眼路. 扫描电镜-X射线能谱仪在丹巴地区铂族矿物物相特征分析中的应用. 岩矿测试, 2013, 32(6): 924-930.

[8]

杨德平, 舒磊, 熊玉新, 王旭, 刘鹏瑞, 刘智. 扫描电镜能谱与冷冻传输装置联用测试矿物中流体包裹体固液相成分的方法研究. 岩矿测试, 2015, 34(5): 550-557. doi: 10.15898/j.cnki.11-2131/td.2015.05.009

[9]

胡勇平, 于学峰, 郑林伟, 郑遗凡. 高分辨扫描电镜和X射线能谱Mapping技术研究碲矿物的成分和形态特征. 岩矿测试, 2015, 34(6): 643-651. doi: 10.15898/j.cnki.11-2131/td.2015.06.007

[10]

刘亚非, 王立社, 魏小燕, 周宁超, 来志庆, 杨文强, 李智明, 赵慧博. 应用电子微探针-扫描电镜-拉曼光谱-电子背散射衍射研究一种未知Ti-Zr-U氧化物的矿物学特征. 岩矿测试, 2016, 35(1): 48-55. doi: 10.15898/j.cnki.11-2131/td.2016.01.009

[11]

周姣花, 徐金沙, 牛睿, 周晶, 来佳仪. 利用扫描电镜和能谱技术研究四川会理铂钯矿床中的铂族矿物特征及铂族元素赋存状态. 岩矿测试, 2018, 37(2): 130-138. doi: 10.15898/j.cnki.11-2131/td.201605050114

[12]

胡海祥, 范作鹏, 牛桂强, 刘洪澜, 刘海龙, 王攀志. 焦家金矿选厂旋流器溢流产品工艺矿物学分析. 岩矿测试, 2014, 33(4): 535-544.

[13]

戴婕, 徐金沙, 杜谷, 王坤阳. 利用扫描电镜-电子探针研究四川杨柳坪镍铜硫化物矿床铂钯的赋存状态及沉淀机制. 岩矿测试, 2015, 34(2): 161-168. doi: 10.15898/j.cnki.11-2131/td.2015.02.002

[14]

徐国栋, 王冠, 程江, 董随亮. 应用能谱扫描电镜与X射线衍射等分析技术研究西藏扎西康铅锌矿中伴生元素锰的赋存状态. 岩矿测试, 2014, 33(6): 808-812. doi: 10.15898/j.cnki.11-2131/td.2014.06.008

[15]

孙有斌. 黄土样中石英单矿物的分离. 岩矿测试, 2001, (1): 23-26.

[16]

董树屏, , 刘涛. 用扫描电镜技术识别广州市大气颗粒物主要种类. 岩矿测试, 2001, (3): 202-207.

[17]

叶美芳, 刘三, 解古巍, 赵慧博, 周宁超, 魏小燕, 杨建国, 侯弘, 王磊, 王轶. 应用扫描电镜-X射线衍射-电子探针研究北山斑岩铜矿区绢英岩中白色云母的特征. 岩矿测试, 2016, 35(2): 166-177. doi: 10.15898/j.cnki.11-2131/td.2016.02.009

[18]

陈生蓉, 帅琴, 高强, 田亚, 徐生瑞, 黄云杰. 基于扫描电镜-氮气吸脱附和压汞法的页岩孔隙结构研究. 岩矿测试, 2015, 34(6): 636-642. doi: 10.15898/j.cnki.11-2131/td.2015.06.006

[19]

范瑶瑶, 胡宗超, 郝宏艳, 刘政平, 覃汉清. X射线衍射-红外光谱-扫描电镜表征超声辅助合成GdPO4:Ce, Tb纳米材料形貌及光学性质. 岩矿测试, 2016, 35(2): 152-158. doi: 10.15898/j.cnki.11-2131/td.2016.02.007

[20]

黄园英, 王倩, 韩子金, 刘菲. 利用扫描电镜技术研究纳米Ni-Fe对四氯化碳快速脱氯的机理. 岩矿测试, 2015, 34(3): 346-352. doi: 10.15898/j.cnki.11-2131/td.2015.03.015

计量
  • PDF下载量(10)
  • 文章访问量(93)
  • HTML全文浏览量(21)
  • 被引次数(0)
目录

Figures And Tables

X射线衍射-扫描电镜等技术研究秘鲁铜硫矿石选矿工艺矿物学特征

曾广圣, 欧乐明