【引用本文】 高梓涵, 李立武, 王玉慧, 等. 双真空炉管的研制及其在岩石加热脱气气体组分测试中的应用[J]. 岩矿测试, 2019, 38(5): 469-478. doi: 10.15898/j.cnki.11-2131/td.201812190138
GAO Zi-han, LI Li-wu, WANG Yu-hui, et al. Development of a Double Vacuum Furnace Tube and Its Application in Gas Composition Determination during Rock Heating Degassing[J]. Rock and Mineral Analysis, 2019, 38(5): 469-478. doi: 10.15898/j.cnki.11-2131/td.201812190138

双真空炉管的研制及其在岩石加热脱气气体组分测试中的应用

1. 

中国科学院西北生态环境资源研究院, 甘肃 兰州 730000

2. 

甘肃省油气资源研究重点实验室/中国科学院油气资源研究重点实验室, 甘肃 兰州 730000

3. 

中国科学院大学, 北京 100049

收稿日期: 2018-12-19  修回日期: 2019-05-14  接受日期: 2019-07-16

基金项目: 国家自然科学基金资助项目(41473062)

作者简介: 高梓涵, 硕士研究生, 地质工程专业。E-mail:2810652521@qq.com

通信作者: 李立武, 博士, 研究员, 主要从事气体地球化学实验与研究工作。E-mail:llwu@lzb.ac.cn

Development of a Double Vacuum Furnace Tube and Its Application in Gas Composition Determination during Rock Heating Degassing

1. 

Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

2. 

Key Laboratory of Petroleum Resources, Gansu Province/Key Laboratory of Petroleum Resources Research, Chinese Academy of Sciences, Lanzhou 730000, China

3. 

University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: LI Li-wu, llwu@lzb.ac.cn

Received Date: 2018-12-19
Revised Date: 2019-05-14
Accepted Date: 2019-07-16

摘要:分析岩石矿物中的气体化学组成,可为岩石圈地幔的不同地球化学过程、地球内部氧化还原环境以及水在深部地球中的循环等研究提供重要的信息与约束条件。对岩矿样品加热使气体脱出是一种常用的实验手段,使用单石英玻璃管作为样品管,石英玻璃结构中不规则的空隙使得气体在高温下易发生扩散与渗透;由钼、钽坩埚组成的双真空炉管一般用于稀有气体同位素组成分析,较少用于气体化学组成分析,且该装置结构复杂,不易组装拆解,也易被损坏。针对以上问题,本文研制了石英玻璃与金属零件组成的双真空盛样炉管,该炉管具有体积小、易于组装、拆解和移动等特点。在相同的实验条件下与单石英玻璃管进行对照实验。根据实验结果,尤其是H2浓度的测量结果表明:不论哪种类型的样品在500℃和950℃加热脱气时,应用本文研制的双真空盛样炉管,测量的H2浓度均高于同等实验条件下应用单石英玻璃管测量的H2浓度,该双真空炉管的气密性优于单石英玻璃管,有利于获得样品中更加真实的气体化学组成。

关键词: 双真空炉管, 单石英玻璃管, 气相色谱法, 岩石脱气

要点

(1) 研制了一种石英玻璃与金属零件组成的体积较小结构简单的双真空炉管。

(2) 建立了使用研制的双真空炉管进行岩矿样品加热脱气实验的实验方法。

(3) 平行对照实验的结果表明研制的双真空炉管在高温下的气密性要优于单石英玻璃管。

Development of a Double Vacuum Furnace Tube and Its Application in Gas Composition Determination during Rock Heating Degassing

ABSTRACT

BACKGROUND:

The analysis of gas chemical composition in rock and mineral can provide important information and constraints for the study of different geochemical processes of lithospheric mantle, redox environment in the earth, and water circulation in the deep earth. Heating rock and ore samples to remove gas is a common experimental method. A single quartz glass tube is used as the sample tube. Irregular voids in quartz glass structure make gas easy to diffuse and permeate at high temperature. The double vacuum furnace tubes consisting of molybdenum and tantalum crucibles are generally used for the analysis of rare gas isotope composition, but seldom used for the analysis of gas chemical composition. The device has a complex structure, is not easy to assemble and disassemble, and is easily damaged.

OBJECTIVES:

To solve the problems contained in the sample-filling tube proposed in the background research.

METHODS:

A double vacuum sampling furnace tube composed of quartz glass and metal parts had been developed. The furnace tube had the characteristics of small size, easy assembly, disassembly and movement. Under the same experimental conditions, the result was compared with that of a single quartz glass tube.

RESULTS:

H2 concentration measured by the double vacuum sampling tube was higher than that measured by the single quartz glass tube under the same experimental conditions, no matter which type of sample was heated to degas at 500℃ or 950℃.

CONCLUSIONS:

The closure of the double vacuum furnace tube is better than that of the single quartz glass tube, which is conducive to obtain more real gas chemical composition in the sample.

KEY WORDS: double vacuum furnace tube, single quartz glass tube, gas chromatography, gas-released from rock

HIGHLIGHTS

(1) A double vacuum furnace tube with small volume and simple structure composed of quartz glass and metal parts was developed.

(2) An experimental method for heating degassing of rock and ore samples using the double vacuum furnace tube was established.

(3) The results of parallel comparative experiments show that the closure of the double vacuum furnace tube was better than that of the single quartz glass tube at high temperature.

本文参考文献

[1]

倪培, 范宏瑞, 丁俊英, 等. 流体包裹体研究进展[J]. 矿物岩石地球化学通报, 2014, 33(1): 1-5. doi: 10.3969/j.issn.1007-2802.2014.01.001

Ni P, Fan H R, Ding J Y, et al. Progress in fluid inclusions[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(1): 1-5. doi: 10.3969/j.issn.1007-2802.2014.01.001

[2]

Lowell R M, Nikita M, Maximb P, et al. Volatile contents of primitive bubble-bearing melt inclusions from Klyuchevskoy volcano, Kamchatka:Comparison of volatile contents determined by mass-balance versus experimental homogenization[J].Journal of Volcanology and Geothermal Research, 2018, 358: 124-131. doi: 10.1016/j.jvolgeores.2018.03.007

[3]

Metrich N, Wallace P J. Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions[J].Reviews in Mineralogy and Geochemistry, 2008, 69(1): 363-402. doi: 10.2138/rmg.2008.69.10

[4]

汤庆艳, 李建平, 张铭杰, 等. 东昆仑夏日哈木镍铜硫化物矿床成矿岩浆条件[J]. 岩石学报, 2017, 33(1): 104-114.

Tang Q Y, Li J P, Zhang M J, et al. The volatile conditions of ore-forming magma for the Xiarihamu Ni-Cu sulfide deposit in East Kunlun orogenic belt, Western China:Constraints from chemical and carbon isotopic compositions of volatiles[J]. Acta Petrologica Sinica, 2017, 33(1): 104-114.

[5]

米敬奎, 王晓梅, 朱光有, 等. 利用包裹体中气体地球化学特征与源岩生气模拟实验探讨鄂尔多斯盆地靖边气田天然气来源[J]. 岩石学报, 2012, 28(3): 859-869.

Mi J K, Wang X M, Zhu G Y, et al. Origin determination of gas from Jingbian gas field in Ordos Basin collective through the geochemistry of gas from inclusions and source rock pyrolysis[J]. Acta Petrologica Sinica, 2012, 28(3): 859-869.

[6]

Armstrong L S, Hirschmann M M, Stanley B D, et al. Speciation and solubility of reduced C-O-H-N volatiles in mafic melt:Implications for volcanism, atmospheric evolution, and deep volatile cycles in the terrestrial planets[J].Geochimica et Cosmochimica Acta, 2015, 171: 283-302. doi: 10.1016/j.gca.2015.07.007

[7]

何佳乐, 潘忠习, 冉敬, 等. 激光拉曼光谱法在单个流体包裹体研究中的应用进展[J]. 岩矿测试, 2015, 34(4): 383-391.

He J L, Pan Z X, Ran J, et al. Research progress on the application of laser Raman spectroscopy in single fluid inclusions[J]. Rock and Mineral Analysis, 2015, 34(4): 383-391.

[8]

周姣花, 徐金沙, 牛睿, 等. 利用扫描电镜和能谱技术研究四川会理铂钯矿床中的铂族矿物特征及铂族元素赋存状态[J]. 岩矿测试, 2018, 37(2): 130-138.

Zhou J H, Xu J S, Niu R, et al. Application of SEM and EDS to analyze the occurrence of platinum group elements and characteristics of platinum group minerals in the Pt-Pd deposit from Huili, Sichuan Province, China[J]. Rock and Mineral Analysis, 2018, 37(2): 130-138.

[9]

张凤奇, 钟红利, 张凤博, 等. 鄂尔多斯盆地X地区延长组长7油层组致密油藏流体包裹体特征及成藏期次[J]. 兰州大学学报(自然科学版), 2016, 52(6): 722-727.

Zhang F Q, Zhong H L, Zhang F B, et al. Hydrocarbon accumulation dating by fluid inclusion characteristics in Chang 7 tight oil reservoirs of Yanchang Formation of X area, Ordos Basin[J]. Journal of Lanzhou University (Natural Sciences), 2016, 52(6): 722-727.

[10]

杨丹, 徐文艺. 激光拉曼光谱测定流体包裹体成分研究进展[J]. 光谱学与光谱分析, 2014, 34(4): 874-878. doi: 10.3964/j.issn.1000-0593(2014)04-0874-05

Yang D, Xu W Y. Development of Raman spectroscopy study of fluid inclusion[J].Spectroscopy and Spectral Analysis, 2014, 34(4): 874-878. doi: 10.3964/j.issn.1000-0593(2014)04-0874-05

[11]

李立武, 刘艳, 王先彬, 等. 高真空与脉冲放电气相色谱联用装置研发及其在岩石脱气化学分析中的应用[J]. 岩矿测试, 2017, 36(3): 222-230.

Li L W, Liu Y, Wang X B, et al. Development of a combined device with high vacuum and pulsed discharge gas chromatography and its application in chemical analysis of gases from rock samples[J]. Rock and Mineral Analysis, 2017, 36(3): 222-230.

[12]

Mironova F. Volatile components of natural fluids:Evi-dence from inclusions in minerals:Methods and results[J].Geochemistry International, 2010, 48(1): 83-90.

[13]

杨丹, 徐文艺, 崔艳合, 等. 二维气相色谱法测定流体包裹体中气相成分[J]. 岩矿测试, 2007, 26(6): 451-454. doi: 10.3969/j.issn.0254-5357.2007.06.005

Yang D, Xu W Y, Cui Y H, et al. Determination of gaseous components in fluid inclusion samples by two-dimensional gas chromatography[J]. Rock and Mineral Analysis, 2007, 26(6): 451-454. doi: 10.3969/j.issn.0254-5357.2007.06.005

[14]

朱和平, 王莉娟. 四极质谱测定流体包裹体中的气相成分[J]. 中国科学(D辑), 2001, 31(7): 586-590.

Zhu H P, Wang L J. Quadrupole mass spectrometry for the determination of gas composition in fluid inclusions[J]. Science in China(Series D), 2001, 31(7): 586-590.

[15]

Azmy K, Blamey N J F. Source of diagenetic fluids from fluid-inclusion gas ratios[J]. Chemical Geology, 2013, 347(6): 246-254.

[16]

Blamey N J F. Composition and evolution of crustal, geo-thermal and hydrothermal fluids interpreted using quantitative fluid inclusion gas analysis[J].Journal of Geochemical Exploration, 2012, 116-117: 17-27. doi: 10.1016/j.gexplo.2012.03.001

[17]

Bekaert D V, Avice G, Marty B, et al. Stepwise heating of lunar anorthosites 60025, 60215, 65315 possibly reveals an indigenous noble gas component on the Moon[J].Geochimica et Cosmochimica Acta, 2017, 218: 114-131. doi: 10.1016/j.gca.2017.08.041

[18]

Zhang M J, Tang Q Y, Hu P Q, et al. Noble gas isotopic constraints on the origin and evolution of the Jinchuan Ni-Cu-(PGE) sulfide ore-bearing ultramafic intrusion, Western China[J].Chemical Geology, 2013, 339: 301-312. doi: 10.1016/j.chemgeo.2012.07.023

[19]

孙明良, 叶先仁. 固体样品中He、Ar同位素的质谱测定[J]. 沉积学报, 1997, 15(1): 48-53.

Sun M L, Ye X R. Measurement on He and Ar isotopic compositions in solid samples by mass spectrometry[J]. Acta Sedimentologica Sinica, 1997, 15(1): 48-53.

[20]

Tolstikhin I, Kamensky I, Tarakanov S, et al. Noble gas isotope sites and mobility in mafic rocks and olivine[J].Geochimica et Cosmochimica Acta, 2010, 74: 1436-1447. doi: 10.1016/j.gca.2009.11.001

[21]

Broadley M W, Ballentine C J, Chavrit D, et al. Sedi-mentary halogens and noble gases within Western Antarctic xenoliths:Implications of extensive volatile recycling to the sub continental lithospheric mantle[J].Geochimica et Cosmochimica Acta, 2016, 176: 139-156. doi: 10.1016/j.gca.2015.12.013

[22]

张铭杰, 王先彬, 李立武, 等. 对幔源岩中流体组分的不同测定方法评价[J]. 地质论评, 2000, 46(2): 160-166. doi: 10.3321/j.issn:0371-5736.2000.02.006

Zhang M J, Wang X B, Li L W, et al. An appraisal of different experimental methods in the determination of fluid composition in mantle-derived rocks[J].Geological Review, 2000, 46(2): 160-166. doi: 10.3321/j.issn:0371-5736.2000.02.006

[23]

李洪伟, 冯连君, 陈健, 等. 密封石英管法快速分析包裹体中氢同位素[J]. 质谱学报, 2015, 36(1): 40-44.

Li H W, Feng L J, Chen J, et al. A rapid method for determination of the hydrogen isotope of inclusions by sealed quartz tube[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(1): 40-44.

[24]

王广, 李立武. 玄武岩热解氢同位素在线分析[J]. 岩矿测试, 2006, 25(4): 311-314. doi: 10.3969/j.issn.0254-5357.2006.04.003

Wang G, Li L W. On-line analysis of hydrogen isotopes of basalt with stepped heating degas[J]. Rock and Mineral Analysis, 2006, 25(4): 311-314. doi: 10.3969/j.issn.0254-5357.2006.04.003

[25]

王小东, 张铭杰, 伏珏蓉, 等. 稀有气体同位素对岩浆侵入方向的制约:以夏日哈木镍铜硫化物矿床为例[J]. 岩石学报, 2018, 34(11): 3433-3444.

Wang X D, Zhang M J, Fu J R, et al. The magmatic intrusive direction constrains from noble gas isotopic compositions:A case study of the Xiarihamu Ni-Cu sulfide deposit in East Kunlun Orogenic Belt, China[J]. Acta Petrologica Sinica, 2018, 34(11): 3433-3444.

[26]

汤庆艳, 张铭杰, 余明, 等. 晚二叠世峨眉山地幔柱岩浆成矿作用[J]. 岩石矿物学杂志, 2013, 32(5): 680-692. doi: 10.3969/j.issn.1000-6524.2013.05.010

Tang Q Y, Zhang M J, Yu M, et al. The magmatic ore-forming system of Late-Permian Emeishan mantle plume[J].Acta Petrologica et Mineralogica, 2013, 32(5): 680-692. doi: 10.3969/j.issn.1000-6524.2013.05.010

[27]

Huang Y H, Tarantola A, Wang W J, et al. Charge history of CO2 in Lishui Sag, East China Sea Basin:Evidence from quantitative Raman analysis of CO2-bearing fluid inclusions[J].Marine and Petroleum Geology, 2018, 98: 50-65. doi: 10.1016/j.marpetgeo.2018.07.030

[28]

Caumona M C, Robert P, Laverret E, et al. Determination of methane content in NaCl-H2O fluid inclusions by Raman spectroscopy:Calibration and application to the external part of the Central Alps (Switzerland)[J].Chemical Geology, 2014, 378-379: 52-61. doi: 10.1016/j.chemgeo.2014.03.016

[29]

Tristan A, Matthew J S, Brian G R, et al. In situ quan-titative analysis of individual H2O-CO2 fluid inclusions by laser Raman spectroscopy[J].Chemical Geology, 2007, 237: 255-263. doi: 10.1016/j.chemgeo.2006.06.025

[30]

顾长光. 碳酸盐矿物热分解机理的研究[J]. 矿物学报, 1990, 10(3): 266-272. doi: 10.3321/j.issn:1000-4734.1990.03.012

Gu C G. A study on the mechanism of thermal decomposition of carbonate minerals[J].Acta Mineralogica Sinica, 1990, 10(3): 266-272. doi: 10.3321/j.issn:1000-4734.1990.03.012

[31]

Severs M J, Azbej T, Thomas J B, et al. Experimental determination of H2O loss from melt inclusions during laboratory heating:Evidence from Raman spectroscopy[J].Chemical Geology, 2007, 237: 358-371. doi: 10.1016/j.chemgeo.2006.07.008

[32]

Doucet L S, Peslier A H, Ionov D A, et al. High water contents in the Siberian Cratonic mantle linked to metasomatism:A FTIR study of Udachnaya peridotite xenoliths[J].Geochimica et Cosmochimica Acta, 2014, 137: 159-187. doi: 10.1016/j.gca.2014.04.011

相似文献(共20条)

[1]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[2]

饶竹, 何淼. 圆盘固相萃取富集-气相色谱法测定地表水中有机氯和有机磷农药. 岩矿测试, 2008, 27(1): 12-16.

[3]

宋淑玲, 饶竹, 李松. 全国地下水调查中12种半挥发性必检组分的测定. 岩矿测试, 2008, 27(2): 91-94.

[4]

孙青, 李松. 高压气相色谱法快速测定痕量长链烯酮. 岩矿测试, 2008, 27(1): 5-8.

[5]

邓天龙, 王爽. 水环境中苯系污染物的分析研究进展. 岩矿测试, 2008, 27(2): 141-145.

[6]

方国桢, 方梅. 气相色谱和薄层色谱法在形态分析中的应用. 岩矿测试, 1996, (4): 299-310.

[7]

张彩明, 许锦, 蒋启贵, 张渠. 在线富集-气相色谱法分析天然气中痕量轻烃. 岩矿测试, 2013, 32(2): 319-324.

[8]

王磊, 刘庆学, 安彩秀, 高希娟, 刘金巍, 李娜. 柱前衍生-气相色谱法同时测定水中醛酮类和硝基苯类化合物. 岩矿测试, 2010, 29(5): 486-490.

[9]

刘玉龙, 黄燕高, 刘菲. 气相色谱法测试土壤中分段石油烃的标准化定量方法初探. 岩矿测试, 2019, 38(1): 102-111. doi: 10.15898/j.cnki.11-2131/td.201709040139

[10]

郭晓辰, 饶竹, 高冉. 气相色谱法测定地下水中拟除虫菊酯有机氯百菌清等24种农药残留. 岩矿测试, 2014, 33(3): 406-412.

[11]

刘永刚, 刘菲, 郑海涛. 固相萃取-气相色谱法测定水中多环芳烃. 岩矿测试, 2004, (2): 148-152.

[12]

高松, 张兰英, 王琳, 宋杰, 崔哲, 吕春欣, 刘鹏, 邓银舟. Needle trap-顶空进样-气相色谱法分析地下水中的苯系物. 岩矿测试, 2010, 29(5): 508-512.

[13]

肖刚. 加速溶剂提取-气相色谱法同时测定土壤中的22种有机氯和有机磷农药. 岩矿测试, 2012, 31(6): 1033-1036.

[14]

梁汉东, 冉凡林, 张宏刚, 张月琴. 气相色谱法测定煤层瓦斯中低浓度氢气和氦气. 岩矿测试, 2005, (4): 254-258.

[15]

房贤文, 谭培功, 单红, 董新春, 张婷婷. 气相色谱法测定地表水中醛酮类化合物. 岩矿测试, 2007, 26(5): 363-366.

[16]

王瑞, 李季, 蒋启贵, 张彩明. 气相色谱法定量测定烃源岩中轻烃的含量. 岩矿测试, 2008, 27(5): 333-336.

[17]

冯朝军, 潘建明, 王红群, 皮业华. 微波消解-气相色谱法测定沉积物中的木质素. 岩矿测试, 2011, 30(1): 23-26.

[18]

左海英, 张莉, 邢晨曦, 李晓亚, 张永涛. 在线净化-气相色谱法测定土壤中有机磷农药. 岩矿测试, 2012, 31(4): 660-665.

[19]

陈卫明, 肖细炼, 李庆霞, 薄玮, 张勤. 气相色谱法测定油气化探样品中酸解烃的研究. 岩矿测试, 2015, 34(6): 698-703. doi: 10.15898/j.cnki.11-2131/td.2015.06.015

[20]

刘金巍, 王磊, 安彩秀, 肖凡, 查晓康, 高希娟. 固相萃取-气相色谱法测定饮用水中的多氯联苯. 岩矿测试, 2011, 30(5): 611-616.

计量
  • PDF下载量(22)
  • 文章访问量(240)
  • HTML全文浏览量(23)
  • 被引次数(0)
目录

Figures And Tables

双真空炉管的研制及其在岩石加热脱气气体组分测试中的应用

高梓涵, 李立武, 王玉慧, 曹春辉, 贺坚