

四酸敞口溶解-电感耦合等离子体发射光谱法测定土壤中的硫
1. | 河北省地质实验测试中心, 河北 保定 071051 |
2. | 中国人民大学环境学院, 北京 100872 |
Determination of Sulfur in Soil by Inductively Coupled Plasma-Optical Emission Spectrometry with Four Acids Open Dissolution
1. | Hebei Research Center for Geoanalysis, Baoding 071051, China |
2. | School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China |
摘要:当前土壤中硫元素的测定方法主要是X射线荧光光谱法和燃烧法,上述两种方法分析速度慢,对高、低含量样品的分析精度较差,难以满足大批量样品快速、准确分析的要求。为提高分析速度和结果的准确度,本文建立了用盐酸-硝酸-氢氟酸-高氯酸(四酸)溶解土壤样品,电感耦合离子体发射光谱法测定硫的方法。通过考察王水消解、王水水浴消解和四酸消解的溶样效果,测定结果表明采用四酸能更好地溶解土壤样品中的硫。方法检出限为10 μg/g,测量范围为33.3~50000 μg/g,相对标准偏差为0.47%~4.05%。本方法简单快速,准确度高,已经过数千件实际样品验证,在不增加分析成本的情况下,一份溶液还可以同时测定钾钠钙镁铁锰铍锂镧铈钪钒钴镍钛等元素,适合在地质行业推广应用。
Determination of Sulfur in Soil by Inductively Coupled Plasma-Optical Emission Spectrometry with Four Acids Open Dissolution
ABSTRACT At present, sulfur in soil is mainly determined by X-ray Fluorescence Spectrometry and tube furnace combustion iodine methods. The analysis speed of these two methods is slow, and the analysis accuracy is poor for both high and low content samples, difficult to meet the requirements of accurate and rapid determination of many samples. In order to improve the speed and accuracy of analysis, a new method for the determination of sulfur in soil samples by Inductively Coupled Plasma-Optical Emission Spectrometry combined with four acids digestion was developed. In this paper the digestion effect of aqua regia, aqua hot water bath and HCl-HNO3-HF-HClO4 is compared. The four acids digestion method was proven to better dissolve sulfur in soil samples. The method is simple, rapid and accurate with a low detection limit of 10 μg/g, analysis range between 33.3 μg/g and 50000 μg/g, and relative standard deviation between 0.47% and 4.05%. Many elements such as potassium, sodium, calcium, magnesium, iron, manganese, beryllium, lithium, lanthanum, cerium, scandium, vanadium, cobalt, nickel, and titanium can be determined simultaneously in a solution without increasing analysis cost. The method, which has been verified with actual samples, is suitable for application in the geological industry.

本文参考文献
[1] |
孙建中, 戴昭华, 盛学斌, 等. 华北地区土壤中硫的赋存特征[J]. 环境科学学报, 1997, 17(2): 187-192. Sun J Z, Dai Z H, Sheng X B, et al. Occurrence of sulfur in soil in Northern China[J]. Acta Scientiae Circumstantiae, 1997, 17(2): 187-192. |
[2] |
刘潇潇, 王钧, 曾辉, 等. 中国温带草地土壤硫的分布特征及其与环境因子的关系[J]. 生态学报, 2016, 36(24): 7919-7928. Liu X X, Wang J, Zeng H, et al. Spatial variation in surface soil sulfur in the temperate grasslands of China and environmental constraints[J]. Acta Ecologica Sinica, 2016, 36(24): 7919-7928. |
[3] |
黎卫亮, 王鹏. 直接燃烧-红外吸收光谱法测定土壤、水系沉积物中的碳和硫[J]. 理化检验(化学分册), 2013, 49(10): 1268-1269. Li W L, Wang P. Determination of carbon and sulfur in soil and stream sediments by direct combustion infrared absorption spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2013, 49(10): 1268-1269. |
[4] |
施善林, 李东麟, 李晓晗, 等. 高频燃烧红外吸收法测定镍铁合金中硫含量[J]. 有色矿冶, 2015, 31(3): 52-54. Shi S L, Li D L, Li X H, et al. Determination of sulfur in ferro-nickel alloy by high frequency-infrared absorption method[J]. Non-ferrous Mining and Metallurgy, 2015, 31(3): 52-54. |
[5] |
王世芳, 韩平, 王纪华, 等. X射线荧光光谱分析法在土壤重金属检测中的应用研究进展[J]. 食品安全质量检测学报, 2016, 7(11): 4394-4400. Wang S F, Han P, Wang J H, et al. Application of X-ray fluorescence spectrometry on the detection of heavy metals in soil[J]. Journal of Food Safety and Quality, 2016, 7(11): 4394-4400. |
[6] |
Sanina N B, Aisueva T S, Chuparina E V, et al. Toxic and radioactive elements in soils and vegetation of natural and technogenic geosystems of Pribaikalye (Lake Baikal region)[J]. Chinese Journal of Geochemistry, 2006, 25(6): 245. |
[7] |
Doyle A, Saavedra A, Tristao M, et al. Determination of S, Ca, Fe, Ni and V in crude oil by energy dispersive X-ray fluorescence spectrometry using direct sampling on paper substrate[J].Fuel, 2015, 162: 39-46. doi: 10.1016/j.fuel.2015.08.072 |
[8] |
沈亚婷, 李迎春, 孙梦荷, 等. 波长与能量色散复合式X射线荧光光谱仪特性研究及矿区土壤分析[J]. 光谱学与光谱分析, 2017, 37(7): 2216-2224. Shen Y T, Li Y C, Sun M H, et al. Studies on characteristics on a combined wavelength and energy dispersion X-ray fluorescence spectrometer and determinations of major, minor and trace elements in soils around a mining area[J]. Spectroscopy and Spectral Analysis, 2017, 37(7): 2216-2224. |
[9] |
张莉娟, 刘义博, 李小莉, 等. 超细粉末压片法-X射线荧光光谱测定水系沉积物和土壤中的主量元素[J]. 岩矿测试, 2014, 33(4): 517-522. Zhang L J, Liu Y B, Li X L, et al. Determination of major elements in stream sediments and soils by X-ray fluorescence spectrometry using pressed-superfine powder pellets[J]. Rock and Mineral Analysis, 2014, 33(4): 517-522. |
[10] |
黄元. XRF-ICP-AES法测定土壤中的主次元素[J]. 化学分析计量, 2015, 24(6): 73-76. Huang Y. Determination of major and minor elements in soil by X-ray fluorescence spectrometry and inductively coupled plasma-atomic emission spectrometry[J]. Chemical Analysis and Meterage, 2015, 24(6): 73-76. |
[11] |
马光强, 谢辉. 硫酸钡重量法测定冰铜中总硫[J]. 冶金分析, 2014, 34(3): 73-76. Ma G Q, Xie H. Determination of total sulfur in copper matte barium sulfate gravimetry[J]. Metallurgical Analysis, 2014, 34(3): 73-76. |
[12] |
刘晓峰, 李子尚, 张志勇, 等. 半熔分解硫酸钡重量法测定各类含重晶石矿样中的硫[J]. 矿冶工程, 2015, 35(1): 101-102. Liu X F, Li Z S, Zhang Z Y, et al. Determining sulfur in various ore samples containing barite by semi-molten decomposition barium sulfate gravimetric method[J]. Mining and Metallurgical Engineering, 2015, 35(1): 101-102. |
[13] |
Busman L M, Dick R P, Tabatabai M A, et al. Determination of total sulfur and chlorine in plant materials by ion chromatography[J].Soil Science Society of America Journal, 1983, 47: 1167-1170. doi: 10.2136/sssaj1983.03615995004700060022x |
[14] |
Poznic M, Gabrovsek R, Novic M, et al. Ion chromatography determination of chloride and sulphate in cement[J].Cement and Concrete Research, 1999, 29: 441-443. doi: 10.1016/S0008-8846(98)00234-8 |
[15] |
陈梅芹, 杨成方, 吴景雄, 等. 矿区河流沉积物中硫的总量测定及过程控制[J]. 冶金分析, 2015, 35(5): 20-24. Chen M Q, Yang C F, Wu J X, et al. Determination of total sulfur in river sediments from mining area and the process control[J]. Metallurgical Analysis, 2015, 35(5): 20-24. |
[16] |
陈静, 高志军, 陈冲科, 等. X射线荧光光谱法分析地质样品的应用技巧[J]. 岩矿测试, 2015, 34(1): 91-98. Chen J, Gao Z J, Chen C K, et al. Application skills on determination of geological sample by X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2015, 34(1): 91-98. |
[17] |
叶家瑜,江宝林. 区域地球化学勘查样品分析方法[M] . 北京: 地质出版社, 2004 Ye J Y,Jiang B L. Methods for Analysis of Regional Geochemical Exploration Samples[M] . Beijing: Geological Publishing House, 2004 |
[18] |
苏凌云. 低温逆王水溶样-电感耦合等离子体原子发射光谱法测定铁矿石中硫和磷[J]. 冶金分析, 2014, 34(11): 69-72. Su L Y. Determination of sulfur and phosphorus in iron ore by inductively coupled plasma atomic emission spectrometry after sample dissolution with inverse aqua reqia in low temperature[J]. Metallurgical Analysis, 2014, 34(11): 69-72. |
[19] |
李清昌, 薛静. ICP-AES测定矿物中硫的前处理方法的对比[J]. 有色矿冶, 2013, 29(1): 57-58. Li Q C, Xue J. Comparison of pretreatment methods for determination of sulfur in minerals by ICP-AES[J]. Non-Ferrous Mining and Metallurgy, 2013, 29(1): 57-58. |
[20] |
张文丽, 龙萍, 吴鉴, 等. ICP-AES法测定磷矿浆烟气脱硫剂固液相中硫含量的研究[J]. 光谱学与光谱分析, 2017, 37(5): 1535-1539. Zhang W L, Long P, Wu J, et al. Determination of sulfur in solid and solution of phosphate ore pulp flue gas desulfurization agent with ICP-AES[J]. Spectroscopy and Spectral Analysis, 2017, 37(5): 1535-1539. |
[21] |
聂西度, 谢华林. 柴油中微量硫的发射光谱研究[J]. 光谱学与光谱分析, 2016, 36(5): 1464-1467. Nie X D, Xie H L. Study on the detection of trace sulphur in diesel with inductively coupled plasma optical emission spectroscopy[J]. Spectroscopy and Spectral Analysis, 2016, 36(5): 1464-1467. |
[22] |
李清彩, 赵庆令, 荀红梅, 等. 电感耦合等离子体原子发射光谱法测定多金属矿石中砷镉铟硫锑[J]. 冶金分析, 2015, 35(2): 61-64. Li Q C, Zhao Q L, Xun H M, et al. Determination of arsenic, cadmium, indium, sufer and antimony in polymetallic ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2015, 35(2): 61-64. |
[23] |
高小山, 倪文山, 姚明星, 等. 电感耦合等离子体原子发射光谱法测定黑钨精矿中痕量硫磷[J]. 冶金分析, 2012, 32(6): 30-33. Gao X S, Ni W S, Yao M X, et al. Determination of trace sulfur and phosphorus in wolframite concentrate by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2012, 32(6): 30-33. |
[24] |
张穗忠, 李杰. 电感耦合等离子体原子发射光谱法测量萤石中硫含量[J]. 武汉工程职业技术学院学报, 2013, 25(4): 1-3. Zhang S Z, Li J. Measuring of sulfur content in fluorite by inductively coupled plasma atomic emission spectrometry[J]. Journal of Wuhan Engineering Institute, 2013, 25(4): 1-3. |
[25] |
胡璇, 石磊, 张炜华, 等. 碱熔融-电感耦合等离子体发射光谱法测定高硫铝土矿中的硫[J]. 岩矿测试, 2017, 36(2): 124-129. Hu X, Shi L, Zhang W H, et al. Determination of sulfur in high-sulfur bauxite by alkali fusion-inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(2): 124-129. |
[26] |
马生凤, 温宏利, 马新荣, 等. 四酸溶样-电感耦合等离子体原子发射光谱法测定铁、铜、锌、铅等硫化物矿石中22个元素[J]. 矿物岩石地球化学通报, 2011, 30(1): 65-72. Ma S F, Wen H L, Ma X R, et al. Determination of 22 elements in iron, copper, zinc, and lead sulphide ores by ICP-AES with four acids digestion[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(1): 65-72. |
[27] |
年季强, 顾锋, 朱春要, 等. 微波消解-电感耦合等离子体原子发射光谱法测定萤石中硅铁镁钾钠磷硫[J]. 冶金分析, 2015, 35(4): 39-43. Nian J Q, Gu F, Zhu C Y, et al. Determination of silicon, ferric, magnesium, potassium, sodium, phosphorus and sulphur in fluorite by microwave digestion-inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2015, 35(4): 39-43. |
[28] |
Cruz S M, Tirk P, Nora F M, et al. Feasibility of sulfur determination in diesel oil by inductively coupled plasma optical emission spectrometry after micro wave induced combustion using flame retardant[J].Fuel, 2015, 160: 108-113. doi: 10.1016/j.fuel.2015.07.069 |
[29] |
刘峰, 秦樊鑫, 胡继伟, 等. 不同混合酸消解样品对电感耦合等离子体原子发射光谱法测定土壤中重金属含量的影响[J]. 理化检验(化学分册), 2011, 47(8): 951-954. Liu F, Qin F X, Hu J W, et al. Effects of different acid mixtures for sample digestion on the ICP-AES determination of heavy metal elements in soil[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2011, 47(8): 951-954. |
[30] |
郭春. 真空紫外光学薄膜制备及其性能检测技术研究[D]. 成都: 中国科学院光电技术研究所, 2014. Guo C. Study on Preparation and Characterization of Optical Coatings for Vacuum Ultraviolet Applications[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2014. |
相似文献(共20条)
[1] |
黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86. |
[2] |
齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98. |
[3] |
李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122. |
[4] |
杜米芳. 电感耦合等离子体发射光谱法同时测定玻璃中铝钙铁钾镁钠钛硫. 岩矿测试, 2008, 27(2): 146-148. |
[5] |
方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107. |
[6] | |
[7] |
刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119. |
[8] | |
[9] |
李志伟, 赵晓亮, 李珍, 王烨, 王君玉. 敞口酸熔-电感耦合等离子体发射光谱法测定稀有多金属矿选矿样品中的铌钽和伴生元素. 岩矿测试, 2017, 36(6): 594-600. doi: 10.15898/j.cnki.11-2131/td.201701030001 |
[10] |
马新荣, 何红蓼, 杨红霞, 李冰. 封闭酸溶-电感耦合等离子体原子发射光谱法同时测定地质样品中硼砷硫. 岩矿测试, 2003, (4): 241-247. |
[11] |
王君玉, 吴葆存, 李志伟, 韩敏, 钟莅湘. 敞口酸溶-电感耦合等离子体质谱法同时测定地质样品中45个元素. 岩矿测试, 2011, 30(4): 440-445. |
[12] |
吴磊, 曾江萍, 刘义博, 吴良英, 张莉娟, 郝爽, 王家松. 硼酸溶液敞口酸溶-电感耦合等离子体质谱法测定萤石中稀土元素. 岩矿测试, 2014, 33(1): 20-24. |
[13] |
赵庆令, 李清彩, 蒲军, 武殿喜. 电感耦合等离子体发射光谱法同时测定土壤样品中 砷硼铈碘铌硫钪锶钍锆等31种元素. 岩矿测试, 2010, 29(4): 455-457. |
[14] |
胡璇, 石磊, 张炜华. 碱熔融-电感耦合等离子体发射光谱法测定高硫铝土矿中的硫. 岩矿测试, 2017, 36(2): 124-129. doi: 10.15898/j.cnki.11-2131/td.2017.02.005 |
[15] |
王龙山, 胡建平, 王光照, 郝辉. 偏硼酸锂熔矿-超声提取-电感耦合等离子体发射光谱法测定岩石水系沉积物土壤样品中硅铝铁等10种元素. 岩矿测试, 2008, 27(4): 287-290. |
[16] |
贺攀红, 吴领军, 杨珍, 张伟, 荣耀, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中痕量砷锑铋汞. 岩矿测试, 2013, 32(2): 240-243. |
[17] |
吴峥, 熊英, 王龙山. 自制氢化物发生系统与电感耦合等离子体发射光谱法联用测定土壤和水系沉积物中的砷锑铋. 岩矿测试, 2015, 34(5): 533-538. doi: 10.15898/j.cnki.11-2131/td.2015.05.006 |
[18] |
赵庆令, 李清彩. 电感耦合等离子体发射光谱法同时测定土壤样品中54种组分. 岩矿测试, 2011, 30(1): 75-78. |
[19] |
沙艳梅, 赵学沛, 张歌, 焦万里, 张丹阳. 多向观测电感耦合等离子体发射光谱法同时测定土壤和水系沉积物中常量和微量元素. 岩矿测试, 2008, 27(4): 291-294. |
[20] |
贺攀红, 杨珍, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中的痕量砷铜铅锌镍钒. 岩矿测试, 2020, 39(2): 235-242. doi: 10.15898/j.cnki.11-2131/td.201904160048 |
计量
- PDF下载量(129)
- 文章访问量(12744)
- HTML全文浏览量(5172)
- 被引次数(0)