【引用本文】 周国华, . 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319-336. doi: 10.15898/j.cnki.11-2131/td.201911140158
ZHOU Guo-hua. Research Progress of Selenium-enriched Land Resources and Evaluation Methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319-336. doi: 10.15898/j.cnki.11-2131/td.201911140158

富硒土地资源研究进展与评价方法

自然资源部地球化学探测技术重点实验室, 中国地质科学院地球物理地球化学勘查研究所, 河北 廊坊 065000

收稿日期: 2019-11-14  修回日期: 2020-01-08  接受日期: 2020-04-16

基金项目: 中国地质调查局地质调查项目“珠江下游及浙江基本农田土地质量地球化学调查与应用示范”(DD2016320)

作者简介: 周国华, 博士, 教授级高级工程师, 从事生态环境地球化学调查研究。E-mail:zhouguohua@igge.cn

Research Progress of Selenium-enriched Land Resources and Evaluation Methods

Key Laboratory of Geochemical Exploration of Ministry of Natural Resources, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China

Received Date: 2019-11-14
Revised Date: 2020-01-08
Accepted Date: 2020-04-16

摘要:硒是重要的生命必需元素,开发富硒农产品是提升我国人体硒摄入水平的安全有效途径,富硒土地资源评价与利用规划是土地质量地球化学调查成果服务于特色农产品发展与脱贫攻坚的重要切入点。本文评述了近年来在土壤和作物硒含量、土壤硒成因来源、土壤硒赋存形态及其生物有效性影响因素、土壤-作物系统硒吸收运移、硒与重金属镉等元素之间的相互作用等调查研究成果。针对我国土壤硒背景值约0.20mg/kg,远低于世界土壤背景值0.40mg/kg,整体上处于低硒水平的实际情况,认为采用0.40mg/kg Se作为富硒土壤标准具有较强的科学依据;多数情况下土壤硒主要来源于成土地质背景,部分地区与人为活动密切有关;富硒土壤可分为地质高背景、次生富集作用、人为输入及其多种作用的叠加成因,元素地球化学性质决定了硒与镉等重金属元素共生的普遍性;土壤硒成因来源以及pH、Eh、有机质、铁铝氧化物等土壤理化条件决定了硒和重金属赋存形态与生物有效性,进而影响到富硒土地的可利用性,成为制定富硒土壤地方标准的理论基础与考虑因素;不同作物种类对硒吸收富集能力不同,筛选适应当地农田生态环境、富硒低镉的农作物具有实际意义;现有的部分富硒农产品标准未充分考虑人体补硒目的,并存在标准间协调性差等问题,急需加强富硒农产品标准的制定。本文提出,富硒土地资源评价不仅需要考虑土壤硒和重金属含量,而且需综合土壤硒成因来源及其生物有效性、土壤-作物系统硒迁移累积、硒与重金属镉等元素之间的相互作用机制,以及当地气候、土壤和景观条件下作物种植的适宜性,依据富硒土地资源可利用性进行分类分区、科学规划和合理种植管理。同时建议,为满足富硒土地资源调查评价与可利用性分析、富硒农产品健康效应研究的需要,需要加强土壤和作物硒含量及其形态的提取分离与分析测试方法技术研究与应用。

关键词: 富硒土地资源评价, 土壤硒背景值, 硒来源与富硒土壤成因, 硒形态与生物有效性, 富硒农产品, 评价标准

要点

(1) 成因、形态、吸收迁移机理等是富硒土地资源评价的科学基础。

(2) 土壤硒有效性、环境质量、作物种植适宜性是富硒土地资源可利用性的关键要素。

(3) 急需加强富硒农产品标准的制定,完善土壤和作物硒形态分析测试技术。

Research Progress of Selenium-enriched Land Resources and Evaluation Methods

ABSTRACT

BACKGROUND:

Selenium is an important, essential element of life. The development of selenium-enriched agricultural products is a safe and effective way to increase the level of human selenium intake in China. The evaluation and utilization planning of selenium-enriched land resources are important aspects of land quality geochemical surveys, to serve the development of characteristic agricultural products and to overcome poverty.

OBJECTIVES:

To improve the methodology for selenium-enriched land assessment and to develop more effective and safe land-use planning methods.

METHODS:

The research results on selenium content in soil and crops, the origin of soil selenium, the soil selenium occurrence and its bioavailability factors, the soil-crop system selenium absorption and transport, and the interaction between selenium and heavy metal cadmium were reviewed in this article.

RESULTS:

The geochemical background of selenium in top soils in China was 0.2mg/kg, significantly lower than the average in world soils (0.4mg/kg). Generally, the soils had a low selenium level, and it was believed that the use of 0.40mg/kg selenium as a selenium-enriched soil standard had a strong scientific basis. Selenium in soils was mostly from a geological setting, however, in some cases anthropogenic activities may be an important source of soil selenium. The genetic mechanism of selenium-enriched soils can be categorized as high geological background, weathering accumulation and anthropogenic input as well as a multi-factor combination. The association of selenium with cadmium and other heavy metals was pervasive because of similar geochemical behavior and geological origin. The species and bio-availability of selenium in soils were mainly controlled by its source and soil physic-chemical properties such as pH, Eh, and contents of organic matter, iron oxides and aluminum oxides. In turn, these factors affect the availability of selenium-enriched land and became the theoretical basis and considerations for formulating local standards for selenium-enriched soil. The accumulation ability of selenium varied greatly between crop cultivars. Selection native crop types with higher selenium accumulation ability and low accumulation with Cd as well as other toxic metals was of practical meaning. Some existing selenium-enriched agricultural product standards did not fully consider the purpose of human selenium supplementation, and there were problems such as poor coordination between standards. It was urgent to strengthen the formulation of selenium-enriched agricultural product standards.

CONCLUSIONS:

Selenium-enriched land suitability assessment, local selenium-enriched soil standard establishment and selenium-enriched crop plantation planning should consider the concentration of selenium and heavy metals in soils, their source and genesis, bio-availability and influencing factors, transport and accumulation in soil-crop system, the synergistic or antagonistic effects between selenium and other chemicals such as cadmium, as well as plantation suitability of crop cultivars under local climate, soil conditions and landscape. According to the availability of selenium-enriched land resources, classification, zoning, scientific planning and reasonable planting management are carried out. In order to meet the needs of investigation and evaluation of selenium-enriched land resources, availability analysis, and research on the health effects of selenium-enriched agricultural products, it is recommended to strengthen the research and application of extraction, separation, analysis, and determination methods for soil and crop selenium content and species.

KEY WORDS: selenium-enriched land assessment, geochemical background value of selenium in soils, source and origin of selenium in soils, species and bio-availability of selenium, selenium-enriched foodstuff, assessment standard

HIGHLIGHTS

(1) The origin, species, uptake and transport mechanism were bases for selenium-enriched land resource assessment.

(2) Bio-availability, soil environmental quality and plantation suitability were the key factors for the ultilization of selenium-enriched land resources.

(3) It was urgent to enhance research on selenium-enriched agricultural product standards and speciation analysis methods.

本文参考文献

[1] World Health Organization . Trace elements in human nutrition and health[M] . Geneva: World Health Organization, 1996
[2]

Sharma V K, McDonald T J, Sohn M, et al. Assessment of toxicity of selenium and cadmium selenium quantum dots:A review[J]. Chemosphere, 2017, 188: 403-413.

[3]

Smits J E, Krohn R M, Akhtar E, et al. Food as med-icine:Selenium enriched lentils offer relief against chronic arsenic poisoning in Bangladesh[J].Environmental Research, 2019, 176: 108561. doi: 10.1016/j.envres.2019.108561

[4]

Fordyce F M.Selenium deficiency and toxicity in the environment[M]//Selinus O.Essentials of medical geology (revised edition).British Geological Survey, 2013: 373-416.

[5]

谭见安. 中华人民共和国地方病与环境图集[M] . 北京: 科学出版社, 1989

Tan J A. The atlas of endemic diseases and their environments in the People's Republic of China[M] . Beijing: Science Press, 1989
[6]

Dinh Q T, Cuia Z W, Huang J, et al. Selenium distribution in the Chinese environment and its relationship with human health:A review[J].Environment International, 2018, 112: 294-309.

[7]

Dai Z H, Imtiaz M, Rizwan M, et al. Dynamics of sele-nium uptake, speciation, and antioxidant response in rice at different panicle initiation stages[J].Science of the Total Environment, 2019, 691: 827-834.

[8]

Andrade F R, da Silva G N, Guimarães K C, et al. Selenium protects rice plants from water deficit stress[J]. Ecotoxicology and Environmental Safety, 2018, 164: 562-570.

[9]

Ulhassan Z, Ali G R, Skhawat A, et al. Dual behavior of selenium:Insights into physico-biochemical, an atomical and molecular analyses of four Brassica napus cultivars[J]. Chemosphere, 2019, 225: 329-341.

[10]

Kolbert Z, Molnár Á, Feigl G, et al. Plant selenium toxicity:Proteome in the crosshairs[J]. Journal of Plant Physiology, 2019, 232: 291-300.

[11]

国土资源部中国地质调查局.中国耕地地球化学调查报告(2015年)[R].北京: 中国地质调查局, 2015.

China Geological Survey, Ministry of Land and Resources.Geochemical survey report of cultivation land in China (2015)[R].Beijing: China Geological Survey, 2015.

[12]

王云,魏复盛. 土壤环境元素化学[M] . 北京: 中国环境科学出版社, 1995: 217-230.

Wang Y,Wei F S. Environmental element chemistry in soil[M] . Beijing: China Environmental Science Press, 1995: 217-230.
[13]

Reimann C, Birke M, Demetriades A, et al.Chemistry of Europe's agricultural soils-Part A: Methodology and interpretation of the GEMAS data set[R].Hannover, 2014: 389-399.

[14]

Swaine J D. The trace-element content of soil[J]. Journal of Geophysical Research Oceans, 1956, 101(12): 28615-28625.

[15]

魏复盛,吴燕玉,郑春江. 中国土壤元素背景值[M] . 北京: 中国环境科学出版社, 1990

Wei F S,Wu Y Y,Zheng C J. Soil element background in China[M] . Beijing: China Environmental Science Press, 1990
[16]

鄢明才,迟清华. 中国东部地壳与岩石的化学组成[M] . 北京: 科学出版社, 1997

Yan M C,Chi Q H. Crustal and rock chemical component in East China[M] . Beijing: Science Press, 1997
[17]

王学求, 刘东盛, 韩志轩, 等. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 2016, 43(5): 1469-1480.

Wang X Q, Liu D S, Han Z X, et al. China soil geochemical baselines networks:Data characteristics[J]. Geology in China, 2016, 43(5): 1469-1480.

[18]

杨光圻, 王淑贞, 周瑞华, 等. 湖北恩施地区原因不明脱发脱甲症病因的研究[J]. 中国医学科学院学报, 1981, (Supplement): 1-6.

Yang G Q, Wang S Z, Zhou R H, et al. Study on the cause of unknown alopecia and fingernail loose in Enshi, Hubei[J]. Acta Academiae Medicinae Sinicae, 1981, (Supplement): 1-6.

[19]

徐春燕, 丁晓英, 闫加力, 等. 湖北省富硒资源的地质特征及利用区划[J]. 世界地质, 2018, 37(1): 340-347.

Xu C Y, Ding X Y, Yan J L, et al. Geological characteristics and usage regionalization of Se-enriched resources in Hubei[J]. Global Geology, 2018, 37(1): 340-347.

[20]

袁知洋, 项剑桥, 吴冬妹, 等. 恩施富硒土壤区主要农作物硒镉特征以及和根系土硒镉关系研究[J]. 资源环境与工程, 2017, 31(6): 706-712.

Yuan Z Y, Xiang J Q, Wu D M, et al. The characteristics of selenium and cadmium in crops and its root soil in the area of Se and Cd-enriched soil in Enshi[J]. Resources Environment and Engineering, 2017, 31(6): 706-712.

[21]

Fang W X, Wu P W. Elevated selenium and other min-eral element concentrations in soil and plant tissue in bone coal sites in Haoping area, Ziyang County, China[J].Plant and Soil, 2004, 261: 135-146.

[22]

黄森. 贵州地区富硒土壤地球化学特征及成因探讨[J]. 云南化工, 2018, 45(7): 147-148.

Huang S. Geochemical characteristics and genesis of Se rich soil in Guizhou area[J]. Yunnan Chemical Technology, 2018, 45(7): 147-148.

[23]

任海利, 高军波, 龙杰, 等. 贵州开阳地区富硒地层及风化土壤地球化学特征[J]. 地球与环境, 2012, 40(2): 161-170.

Ren H L, Gao J B, Long J, et al. Geochemical characteristics of selenium-rich strata and weathered soil from Kaiyang County, Guizhou Province[J]. Earth and Environment, 2012, 40(2): 161-170.

[24]

罗思亮. 台山市土壤Se来源的研究[J]. 安徽农业科学, 2013, 41(12): 5333-5334.

Luo S L. Source analysis of selenium in soil in Taishan City[J]. Journal of Anhui Agricultural Science, 2013, 41(12): 5333-5334.

[25]

宋明义, 李恒溪, 魏迎春, 等. 浙江省龙游志棠地区硒的地球化学研究[J]. 贵州地质, 2005, 22(3): 176-180.

Song M Y, Li H X, Wei Y C, et al. Geochemistry of the selenium, Zhitang Town, Longyou County, Zhejiang Province[J]. Guizhou Geology, 2005, 22(3): 176-180.

[26]

吴俊. 福建省寿宁县富硒土壤地球化学特征[J]. 物探与化探, 2018, 42(2): 386-391.

Wu J. Geochemical characteristics of selenium-rich soil in Shouning County of Fujian Province[J]. Geophysical and Geochemical Exploration, 2018, 42(2): 386-391.

[27]

杨生吉. 福建周宁县表层土壤硒含量分布及影响因素[J]. 资源环境与工程, 2019, 33(1): 42-45.

Yang S J. Distribution of soil selenium in Zhouning County of Fujian and its influencing factors[J]. Resources Environment and Engineering, 2019, 33(1): 42-45.

[28]

李兆谊, 罗映林, 赵喜林, 等. 桂东南地区兴业县富Se土壤地球化学特征及来源浅析[J]. 南方农业, 2018, 12(20): 189-191.

Li Z Y, Luo Y L, Zhao X L, et al. Selenium-rich geochemical characteristics and source discussion in south-east Guangxi, Xingyue County[J]. South China Agriculture, 2018, 12(20): 189-191.

[29]

黄子龙, 林清梅, 范汝海, 等. 广西全州县富硒土壤地球化学特征[J]. 物探与化探, 2018, 42(2): 381-385.

Huang Z L, Lin Q M, Fan R H, et al. Geochemical characteristics of selenium-rich soil in Quanzhou County of Guangxi[J]. Geophysical and Geochemical Exploration, 2018, 42(2): 381-385.

[30]

Tabelin C B, Igarashi T, Villacorte-Tabelin M, et al. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks:A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies[J]. Science of the Total Environment, 2018, 645: 1522-1553.

[31]

Xu Y F, Li Y H, Li H R, et al. Effects of topography and soil properties on soil selenium distribution and bioavailability (phosphate extraction):A case study in Yongjia County, China[J]. Science of the Total Environment, 2018, 633: 240-248.

[32]

Mervi S, Juhani V, Stellan H, et al. Sorption and speci-ation of selenium in boreal forest soil[J]. Journal of Environmental Radioactivity, 2016, 64: 220-231.

[33]

陈秋菊, 甘义群, 张若雯, 等. 江汉平原沙洋地区表层土壤中硒的分布特征及富硒原因分析[J]. 安全与环境工程, 2019, 26(4): 8-14.

Chen Q J, Gan Y Q, Zhang R W, et al. Distribution characteristics of selenium in surface soil of Shayang area in Jianghan Plain and the cause analysis of selenium richness[J]. Safety and Environmental Engineering, 2019, 26(4): 8-14.

[34]

Matos R P, Lima V M P, Windmöller C C, et al. Correlation between the natural levels of selenium and soil physicochemical characteristics from the Jequitinhonha Valley (MG), Brazil[J]. Journal of Geochemical Exploration, 2017, 172: 195-202.

[35]

杨志强, 李杰, 郑国东, 等. 广西北部湾沿海经济区富硒土壤地球化学特征[J]. 物探与化探, 2014, 38(6): 1260-1264, 1269.

Yang Z Q, Li J, Zheng G D, et al. Geochemical characteristics of selenium-rich soil in Beibu Gulf coastal economic zone of Guangxi[J]. Geophysical and Geochemical Exploration, 2014, 38(6): 1260-1264, 1269.

[36]

韩笑, 周越, 吴文良, 等. 富硒土壤硒含量及其与土壤理化性状的关系——以江西丰城为例[J]. 农业环境科学学报, 2018, 37(6): 1177-1183.

Han X, Zhou Y, Wu W L, et al. Selenium contents of farmland soils and their relationship with main soil properties in Fengcheng, Jiangxi[J]. Journal of Agro-Environment Science, 2018, 37(6): 1177-1183.

[37]

周国华,孙彬彬,方金梅. 福建龙海生态地球化学研究[M] . 北京: 地质出版社, 2018: 169

Zhou G H,Sun B B,Fang J M. Eco-geochemistry research in Longhai, Fujian Province[M] . Beijing: Geological Publishing House, 2018: 169
[38]

曹容浩. 福建省龙海市表层土壤硒含量及影响因素研究[J]. 岩矿测试, 2017, 36(3): 282-288.

Cao R H. Study on selenium content of surface soils in Longhai, Fujian and its influencing factors[J]. Rock and Mineral Analysis, 2017, 36(3): 282-288.

[39]

方金梅. 福州市土壤硒形态分析及其迁移富集规律[J]. 岩矿测试, 2008, 27(2): 103-107.

Fang J M. Selenium speciation analysis and its transformation and enrichment in soils of Fuzhou City[J]. Rock and Mineral Analysis, 2008, 27(2): 103-107.

[40]

Li Z, Liang D L, Peng Q, et al. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability:A review[J]. Geoderma, 2017, 295: 69-79.

[41]

Cheng H X, Li M, Zhao C D, et al. Overview of trace metals in the urban soil of 31 metropolises in China[J]. Journal of Geochemical Exploration, 2014, 139: 31-52.

[42]

张秀芝, 马忠社, 王荫楠, 等. 河北平原土壤Se异常成因及其生态效应[J]. 地球与环境, 2012, 40(4): 541-547.

Zhang X Z, Ma Z S, Wang Y N, et al. The origin and ecological effects of selenium abnormity in soil in Hebei Plain[J]. Earth and Environment, 2012, 40(4): 541-547.

[43]

谢薇, 杨耀栋, 侯佳渝, 等. 天津市蓟州区富硒土壤成因与土壤硒来源研究[J]. 物探与化探, 2019, 43(6): 1373-1381.

Xie W, Yang Y D, Hou J Y, et al. Studies on causes and influential factors of selenium-enriched soils in Jizhou District of Tianjin[J]. Geophysical and Geochemical Exploration, 2019, 43(6): 1373-1381.

[44]

Shaheen S M, Kwon E E, Biswas J K, et al. Arsenic, chromium, molybdenum, and selenium:Geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt[J]. Chemosphere, 2017, 180: 553-563.

[45]

Tolu J, Tullo P D, Hécho I L, et al. A new methodology involving stable isotope tracer to compare simultaneously short- and long-term selenium mobility in soils[J]. Analytical and Bioanalytical Chemistry, 2014, 406: 1221-1231.

[46]

Di T P, Pannier F, Thiry Y, et al. Field study of time-dependent selenium partitioning in soils using isotopically enriched stable selenite tracer[J]. Science of the Total Environment, 2016, 562: 280-288.

[47]

Li J, Peng Q, Liang D L, et al. Effects of aging on the fraction distribution and bioavailability of selenium in three different soils[J]. Chemosphere, 2016, 144: 2351-2359.

[48]

Almahayni T, Bailey E, Crout N M J, et al. Effects of incubation time and filtration method on Kd of indigenous selenium and iodine in temperate soils[J].Journal of Environmental Radioactivity, 2017, 177: 84-90.

[49]

Jia M M, Zhang Y X, Huang B, et al. Source appor-tionment of selenium and influence factors on its bioavailability in intensively managed greenhouse soil:A case study in the east bank of the Dianchi Lake, China[J].Ecotoxicology and Environmental Safety, 2019, 170: 238-245.

[50]

Statwick J, Sher A A. Selenium in soils of western Colorado[J]. Journal of Arid Environments, 2017, 137: 1-6.

[51]

郝应龙, 李崇博, 安永刚, 等. 乌鲁木齐市某蔬菜基地富硒土壤地球化学特征及生物效应研究[J]. 新疆地质, 2019, 37(2): 167-171.

Hao Y L, Li C B, An Y G, et al. Study on geochemical characteristics and bio-effects of selenium-rich soil in a vegetable base in Urumqi, Xinjiang[J]. Xinjiang Geology, 2019, 37(2): 167-171.

[52]

Joy E J M, Broadley M R, Young S D, et al. Soil type influences crop mineral composition in Malawi[J]. Science of the Total Environment, 2015, 505: 587-595.

[53]

Silva J E C, Wadt L H O, Silva K E, et al. Natural variation of selenium in Brazil nuts and soils from the Amazon Region[J]. Chemosphere, 2017, 188: 650-658.

[54]

尹宗义, 任蕊, 晁旭, 等. 三原-阎良地区富硒土壤中硒形态特征研究[J]. 陕西地质, 2016, 34(1): 31-37.

Yin Z Y, Ren R, Chao X, et al. Selenium speciation in selenium-rich soil of Sanyuan-Yanliang Area[J]. Geology of Shaanxi, 2016, 34(1): 31-37.

[55]

杨奎, 李湘凌, 张敬雅, 等. 安徽庐江潜在富硒土壤硒生物有效性及其影响因素[J]. 环境科学研究, 2018, 31(4): 715-724.

Yang K, Li X L, Zhang J Y, et al. Selenium bioavailability and the influential factors in potentially selenium enriched soils in Lujiang County, Anhui Province[J]. Research of Environmental Sciences, 2018, 31(4): 715-724.

[56]

Supriatin S, Weng L P, Comans R N J, et al. Selenium speciation and extractability in Dutch agricultural soils[J]. Science of the Total Environment, 2015, 532: 368-382.

[57]

Fordyce F M, Brereton N, Hughes J, et al. An initial study to assess the use of geological parent materials to predict the Se concentration in overlying soils and in five staple foodstuffs produced on them in Scotland[J]. Science of the Total Environment, 2010, 408(22): 5295-5305.

[58]

Supriatin S, Weng L P, Comans R N J, et al. Selenium-rich dissolved organic matter determines selenium uptake in wheat grown on low-selenium arable land soils[J]. Plant Soil, 2016, 408: 73-94.

[59]

Chistophersen O A, Lyons G, Haug A, et al.Selenium[M]//Alloway B J.Heavy metals in soils: Tarce metals and metalloids in soils and their bioavailability.Springer Science, 2013: 429-463.

[60]

Dinh Q T, Li Z, Tran T A T, et al. Role of organic acids on the bioavailability of selenium in soil:A review[J]. Chemosphere, 2017, 184: 618-635.

[61]

Chang C Y, Yin R S, Wang X, et al. Selenium translocation in the soil-rice system in the Enshi seleniferous area, central China[J]. Science of the Total Environment, 2019, 669: 83-90.

[62]

Xiao K C, Tang J J, Chen H, et al. Impact of land use/land cover change on the topsoil selenium concentration and its potential bioavailability in a karst area of southwest China[J]. Science of the Total Environment, 2020, 708: 1-8.

[63]

Wang D, Dinh Q T, Thu T T A, et al. Effect of selenium-enriched organic material amendment on selenium fraction transformation and bioavailability in soil[J]. Chemosphere, 2018, 199: 417-426.

[64]

Supriatin S, Terrones C A, Bussink W, et al. Drying effects on selenium and copper in 0.01M calcium chloride soil extractions[J]. Geoderma, 2015, 255-256: 104-114.

[65]

Lessa J H L, Araujo A M, Silva G N T, et al. Adsorption-desorption reactions of selenium(Ⅵ) in tropical cultivated and uncultivated soils under Cerrado biome[J].Chemosphere, 2016, 164: 271-277.

[66]

姜超强, 沈嘉, 祖朝龙, 等. 水稻对天然富硒土壤硒的吸收及转运[J]. 应用生态学报, 2015, 26(3): 809-816.

Jiang C Q, Shen J, Zu C L, et al. Selenium uptake and transport of rice under different Se-enriched natural soils[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 809-816.

[67]

李瑜. 安康富硒土壤中不同农作物富硒能力比较研究[J]. 陕西农业科学, 2015, 61(11): 13-14.

Li Y. Comparison on Se uptake ability of different crops in Se-rich soil at Ankong[J]. Shaanxi Journal of Agricultural Sciences, 2015, 61(11): 13-14.

[68]

李正文, 张艳玲, 潘根兴, 等. 不同水稻品种籽粒Cd、Cu和Se的含量差异及其人类膳食摄取风险[J]. 环境科学, 2003, 24(3): 112-115.

Li Z W, Zhang Y L, Pan G X, et al. Grain contents of Cd, Cu and Se by 57 rice cultivars and the risk significance for human dietary uptake[J]. Environmental Science, 2003, 24(3): 112-115.

[69]

王家伟, 陈雄波, 黄起东, 等. 不同水稻品种对硒的吸收转化试验[J]. 农业工程, 2016, 6(4): 82-84.

Wang J W, Chen X B, Huang Q D, et al. Test on absorption and transformation of selenium in different rice varieties[J]. Agricultural Engineering, 2016, 6(4): 82-84.

[70]

Natasha , Shahid M, Niazi N K, et al. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health[J]. Environmental Pollution, 2018, 234: 915-934.

[71]

姜超强, 沈嘉, 徐经年, 等. 不同富硒土壤对烤烟生长及硒吸收转运的影响[J]. 西北植物学报, 2014, 34(11): 2303-2308.

Jiang C Q, Shen J, Xu J N, et al. Effects of Se-enriched soils on the plant growth, selenium uptake and transport in flue-cured tobacco[J]. Acta Botany Boreal-Occident Sinica, 2014, 34(11): 2303-2308.

[72]

王雅玲, 潘根兴, 刘洪莲, 等. 皖南茶区土壤硒含量及其与茶叶中硒的关系[J]. 农业生态环境, 2005, 21(2): 54-57.

Wang Y L, Pan G X, Liu H L, et al. Soil and tea selenium in tea gardens in south Anhui[J]. Rural Eco-Environment, 2005, 21(2): 54-57.

[73]

Miguel N A, Carmen C V. Selenium in food and the human body:A review[J]. Science of the Total Environment, 2008, 400: 115-141.

[74]

Yin H Q, Qi Z Y, Li M Q, et al. Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L.[J]. Ecotoxicology and Environmental Safety, 2019, 169: 911-917.

[75]

Shultz C D, Bailey R T, Gates T K, et al. Simulating selenium and nitrogen fate and transport in coupled stream-aquifer systems of irrigated regions[J]. Journal of Hydrology, 2018, 560: 512-529.

[76]

de Feudis M, D'Amato R, Businelli D, et al. Fate of selenium in soil:A case study in a maize (Zea mays L.) field under two irrigation regimes and fertilized with sodium selenite[J].Science of the Total Environment, 2019, 659: 131-139.

[77]

Hussein H A A, Darwesh O M, Mekki B B, et al. Evaluation of cytotoxicity, biochemical profile and yield components of groundnut plants treated with nano-selenium[J].Biotechnology Reports, 2019, : 24. doi: 10.1016/j.btre.2019.e00377

[78]

Ullah H, Liu G J, Yousaf B, et al. Developmental sele-nium exposure and health risk in daily foodstuffs:A systematic review and meta-analysis[J]. Ecotoxicology and Environmental Safety, 2018, 149: 291-306.

[79]

郑小江, 胡蔚红, 孙必发, 等. 富硒食品标准标签研究[J]. 中国标准化, 2003, (5): 19-21.

Zheng X J, Hu W H, Sun B F, et al. Study on the standard and label of selenium-rich food[J]. Standardization in China, 2003, (5): 19-21.

[80]

辜世伟, 胡云均, 刘方菁, 等. 不同加工精度对稻谷中镉含量的影响[J]. 中国粮油学报, 2019, (8): 33-39.

Gu S W, Hu Y J, Liu F J, et al. Effect of different processing precision on cadmium content in paddy rice[J]. Journal of the Chinese Cereals and Oil Association, 2019, (8): 33-39.

[81]

World Health Organization.Environmental health criterion 58-Selenium[R].Geneva: World Health Organization, 1987.

[82]

Liang R Y, Shuai S A, Shi Y J, et al. Comprehensive assessment of regional selenium resources in soils based on the analytic hierarchy process:Assessment system construction and case demonstration[J]. Science of the Total Environment, 2017, 605-606: 618-625.

[83]

Zhou X B, Li Y Y, Lai F, et al. Effects of different water management on absorption and accumulation of selenium in rice[J]. Saudi Journal of Biological Sciences, 2018, 25: 1178-1182.

[84]

Wang D, Xue M Y, Wang Y K, et al. Effects of straw amendment on selenium aging in soils:Mechanism and influential factors[J]. Science of the Total Environment, 2019, 657: 871-881.

[85]

宋明义, 黄春雷, 董岩翔, 等. 浙江富硒土壤成因分类及开发利用现状[J]. 上海地质, 2010, 31(Supplement 1): 107-110.

Song M Y, Huang C L, Dong Y X, et al. Genetic classification and utilization situation of selenium-rich soil in Zhejiang Province[J]. Shanghai Geology, 2010, 31(Supplement 1): 107-110.

[86]

谢邦廷, 贺灵, 江官军, 等. 中国南方典型富硒区土壤硒有效性调控实验[J]. 岩矿测试, 2017, 36(3): 273-281.

Xie B T, He L, Jiang G J, et al. Regulation and evaluation of selenium availability in Se-rich soils in southern China[J]. Rock and Mineral Analysis, 2017, 36(3): 273-281.

[87]

Shahid M A, Balal R M, Khan N, et al. Selenium impedes cadmium and arsenic toxicity in potato by modulating carbohydrate and nitrogen metabolism[J]. Ecotoxicology and Environmental Safety, 2019, 180: 588-599.

[88]

Ren M M, Qin Z J, Li X, et al. Selenite antagonizes the phytotoxicity of Cd in the cattail Typha angustifolia[J].Ecotoxicology and Environmental Safety.

[89]

Dai H P, Wei S H, Skuza L D, et al. Selenium spiked in soil promoted zinc accumulation of Chinese cabbage and improved its antioxidant system and lipid peroxidation[J]. Ecotoxicology and Environmental Safety, 2019, 180: 179-184.

[90]

Anirban B, Saroni B, Arabinda D, et al. Spatial vari-ability and competing dynamics of arsenic, selenium, iron and bioavailable phosphate from ground water and soil to paddy plant parts[J].Groundwater for Sustainable Development, 2018, 7: 328-335.

[91]

王建伟, 王朝辉, 毛晖, 等. 硒锌钼对黄土高原马铃薯和小白菜产量及营养元素与硒镉含量的影响[J]. 农业环境科学学报, 2012, 31(11): 2114-2120.

Wang J W, Wang Z H, Mao H, et al. Effect of Se, Zn and Mo on yield and contents of nutrient elements and selenium and cadmium of potato and cabbage on the loess plateau[J]. Journal of Agro-Environment Science, 2012, 31(11): 2114-2120.

[92]

梁程, 林匡飞, 张雯, 等. 不同浓度硫处理下硒镉交互胁迫对水稻幼苗的生理特性影响[J]. 农业环境科学学报, 2012, 31(5): 857-866.

Liang C, Lin K F, Zhang W, et al. Effects of sulfur and selenium treatment on plant growth and some physiological characteristics of rice under cadmium stress[J]. Journal of Agro-Environment Science, 2012, 31(5): 857-866.

[93]

铁梅, 刘阳, 李华为, 等. 硒镉处理对萝卜硒镉吸收的影响及其交互作用[J]. 生态学杂志, 2014, 33(6): 1587-1593.

Tie M, Liu Y, Li H W, et al. Uptake of Se and Cd in radish and their effects on growth[J]. Chinese Journal of Ecology, 2014, 33(6): 1587-1593.

[94]

Zhang Z Z, Yuan L X, Qi S H, et al. The threshold effect between the soil bioavailable molar Se:Cd ratio and the accumulation of Cd in corn (Zeamays L.) from natural Se-Cd rich soils[[J].Science of the Total Environment, 2019, 688: 1228-1235.

[95]

Feng R W, Wei C Y, Tu S X, et al. A dual role of Se on Cd toxicity:Evidences from the uptake of Cd and some essential elements and the growth responses in paddy rice[J].Biology Trace Element Resource, 2013, 151: 113-121.

[96]

Li Y Y, Hu W J, Zhao J T, et al. Selenium decreases methylmercury and increases nutritional elements in rice growing in mercury-contaminated farmland[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109447.

[97]

Wang X N, Wang S, Pan X L, et al. Heteroaggregation of soil particulate organic matter and biogenic selenium nanoparticles for remediation of elemental mercury contamination[J]. Chemosphere, 2019, 221: 486-492.

[98]

Wang X N, Pan X L, Gadd G M, et al. Soil dissolved organic matter affects mercury immobilization by biogenic selenium nanoparticles[J]. Science of the Total Environment, 2019, 658: 8-15.

[99]

Wang X N, Zhang D Y, Pan X L, et al. Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil[J]. Chemosphere, 2017, 170: 266-273.

[100]

Yu Y, Yuan S L, Zhuang J, et al. Effect of selenium on the uptake kinetics and accumulation of and oxidative stress induced by cadmium in Brassica Chinensis[J]. Ecotoxicology and Environmental Safety, 2018, 162: 571-580.

[101]

薛超群, 郭敏. 氢化物发生-原子荧光光谱法测定土壤样品中不同价态的硒[J]. 岩矿测试, 2012, 31(6): 980-984.

Xue C Q, Guo M. Analysis of different valence states of selenium in geological samples by hydride generation-atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 2012, 31(6): 980-984.

[102]

秦冲, 施畅, 万秋月, 等. 高效液相色谱-电感耦合等离子体质谱联用检测土壤中的无机硒形态[J]. 岩矿测试, 2018, 37(6): 664-670.

Qin C, Shi C, Wan Q Y, et al. Speciation analysis of inorganic selenium in soil by high performance liquid chromatography-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2018, 37(6): 664-670.

[103]

Wang M K, Cui Z W, Xue M Y, et al. Assessing the uptake of selenium from naturally enriched soils by maize (Zeamays L.) using diffusive gradients in thin-films technique (DGT) and traditional extractions[J].Science of the Total Environment, 209, 689: 1-9.

[104]

Vinceti M, Filippini T, Malagoli C, et al. Amyotrophic lateral sclerosis incidence following exposure to inorganic selenium in drinking water:A long-term follow-up[J]. Environmental Research, 2019, 179: 108742.

[105]

龚如雨, 钟松臻, 张宝军, 等. 富硒非富硒大米有机硒的组成及硒的可利用度分析[J]. 食品研究与开发, 2017, 38(20): 11-15.

Gong R Y, Zhong S Z, Zhang B J, et al. Composition of the organic selenium (Se) and the accessible Se in Se-enriched and non Se-enriched rice[J]. Food Research and Development, 2017, 38(20): 11-15.

[106]

Lusa M, Help H, Honkanen A P, et al. The reduction of selenium(Ⅵ) by boreal Pseudomonas sp.strain T5-6-Ⅰ-Effects on selenium(Ⅳ) uptake in Brassica Oleracea[J].Environmental Research, 2019, 177: 108642.

[107]

Both E B, Stonehouse G C, Lima L W, et al. Selenium tolerance, accumulation, localization and speciation in a cardamine hyperaccumulator and a non-hyperaccumulator[J].Science of the Total Environment.

[108]

Qin H B, Zhu J M, Lin Z Q, et al. Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy[J]. Environmental Pollution, 2017, 225: 361-369.

[109]

Alexander P, Miriam S, Susanne V A, et al. Charac-terization of selenium speciation in selenium-enriched button mushrooms (Agaricus bisporus) and selenized yeasts (dietary supplement) using X-ray absorption near-edge structure (XANES) spectroscopy[J].Journal of Trace Elements in Medicine and Biology, 2019, 51: 164-168.

相似文献(共20条)

[1]

谢邦廷, 贺灵, 江官军, 孙彬彬, 曾道明, 周国华. 中国南方典型富硒区土壤硒有效性调控与评价. 岩矿测试, 2017, 36(3): 273-281. doi: 10.15898/j.cnki.11-2131/td.201610100152

[2]

况琴, 吴山, 黄庭, 吴代赦, 向京. 生物质炭和钢渣对江西丰城典型富硒区土壤硒有效性的调控效果与机理研究. 岩矿测试, 2019, 38(6): 705-714. doi: 10.15898/j.cnki.11-2131/td.201901190014

[3]

冯辉, 张学君, 张群, 杜丽娜. 北京大清河流域生态涵养区富硒土壤资源分布特征和来源解析. 岩矿测试, 2019, 38(6): 693-704. doi: 10.15898/j.cnki.11-2131/td.201905270071

[4]

谢薇, 杨耀栋, 菅桂芹, 李国成, 赵新华, 侯佳渝. 四种浸提剂对果园与菜地土壤有效硒浸提效果的对比研究. 岩矿测试, 2020, 39(3): 434-441. doi: 10.15898/j.cnki.11-2131/td.201905150063

[5]

张荣英, 王月翠, 彭志忠. 富硒硫银锗矿的矿物学研究. 岩矿测试, 1984, (2): 124-130.

[6]

高孝礼, 汤志云, 张培新, 肖灵, 李方实. 多目标生态地球化学调查土壤样品中砷硒锑有效态分析方法的商榷. 岩矿测试, 2004, (3): 173-178.

[7]

靳芳. 青海省察尔汗盐湖卤水中有效硒的测定. 岩矿测试, 2010, 29(2): 193-195.

[8]

赵宗生, 赵小学, 姜晓旭, 赵林林, 张霖琳. 原子荧光光谱测定土壤和水系沉积物中硒的干扰来源及消除方法. 岩矿测试, 2019, 38(3): 333-340. doi: 10.15898/j.cnki.11-2131/td.201809190106

[9]

张绿茵, 余晓平, 郭亚飞, 邓天龙. 生物样品中硒形态分析前处理技术. 岩矿测试, 2012, 31(3): 407-412.

[10]

万国江, 葛晓立. 张家口克山病地区土壤硒的地球化学形态研究. 岩矿测试, 2000, (4): 254-258.

[11]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[12]

李玉双, 孙铁珩, 孙丽娜, 李昕馨. 根际环境锌镉镍的形态变化与植物有效性. 岩矿测试, 2007, 26(4): 257-263.

[13]

黄秀英, 邹骏城. 氢化法-ICP-AES测定水系沉积物和土壤中痕量硒. 岩矿测试, 1987, (3): 167-170.

[14]

曹容浩. 福建省龙海市表层土壤硒含量及影响因素研究. 岩矿测试, 2017, 36(3): 282-288. doi: 10.15898/j.cnki.11-2131/td.201606130084

[15]

秦冲, 施畅, 万秋月, 王磊, 刘爱琴, 安彩秀. 高效液相色谱-电感耦合等离子体质谱联用检测土壤中的无机硒形态. 岩矿测试, 2018, 37(6): 664-670. doi: 10.15898/j.cnki.11-2131/td.201803200024

[16]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[17]

陈志兵. 碱性模式氢化物发生—原子荧光光谱法测定土壤中的痕量硒. 岩矿测试, 2002, (4): 311-314.

[18]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[19]

薛超群, 郭敏. 氢化物发生-原子荧光光谱法测定土壤样品中不同价态的硒. 岩矿测试, 2012, 31(6): 980-984.

[20]

何中发, 邵超英, 温晓华, 张琢. 悬浮液进样-氢化物发生原子荧光光谱法测定土壤中痕量砷锑硒. 岩矿测试, 2007, 26(6): 460-464.

计量
  • PDF下载量(42)
  • 文章访问量(248)
  • HTML全文浏览量(22)
  • 被引次数(0)
目录

Figures And Tables

富硒土地资源研究进展与评价方法

周国华