【引用本文】 付宇, 曹文庚, 张娟娟, . 基于随机森林建模预测河套盆地高砷地下水风险分布[J]. 岩矿测试, 2021, 40(6): 860-870. doi: 10.15898/j.cnki.11-2131/td.202108170099
FU Yu, CAO Wen-geng, ZHANG Juan-juan. High Arsenic Risk Distribution Prediction of Groundwater in the Hetao Basin by Random Forest Modeling[J]. Rock and Mineral Analysis, 2021, 40(6): 860-870. doi: 10.15898/j.cnki.11-2131/td.202108170099

基于随机森林建模预测河套盆地高砷地下水风险分布

1. 

华北水利水电大学, 河南 郑州 450046

2. 

中国地质科学院水文地质环境地质研究所, 河北 石家庄 050061

3. 

河北省地矿局第六地质大队, 河北 石家庄 050085

收稿日期: 2021-08-17  修回日期: 2021-09-08  接受日期: 2021-09-21

基金项目: 国家自然科学基金项目(41972262);河北自然科学基金优秀青年科学基金项目(D2020504032);河南省高校重点科研项目计划(19A170010)

作者简介: 付宇, 博士, 讲师, 从事地质信息化工作。E-mail: fuyu1203@163.com

通信作者: 曹文庚, 博士, 副研究员, 从事水文地球化学、水文地质工作。E-mail: 281084632@qq.com

High Arsenic Risk Distribution Prediction of Groundwater in the Hetao Basin by Random Forest Modeling

1. 

North China University of Water Resources and Electric Power, Zhengzhou 450046, China

2. 

Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China

3. 

The 6th Geological Team, Hebei Bureau of Geology and Mineral Resources, Shijiazhuang 050085, China

Corresponding author: CAO Wen-geng, 281084632@qq.com

Received Date: 2021-08-17
Revised Date: 2021-09-08
Accepted Date: 2021-09-21

摘要:河套盆地浅层地下水砷污染严重,对当地居民健康造成严重影响。当前对河套盆地浅层地下水高砷分布的研究受限于采样时间和样本数量,难以从宏观角度对河套盆地高砷地下水的空间分布作出较为全面的评价。本文基于研究区506个浅层地下水样品,以9个地表环境参数为初始预测变量,经过最佳变量组合筛选,采用随机森林建模来产生风险概率,评价了预测变量的重要性以及对高砷地下水的影响。以气候因子为动态预测变量,根据模型识别不同季节地下水高砷的概率分布并制作了风险区专题图。结果表明:研究区的地下水样品砷含量为0.05~916.7μg/L,超标率(砷浓度>10μg/L)为50%;地下水高砷风险区主要分布在河套盆地的沉积中心地带,但冬季高砷风险区面积减少1907km2,占研究区总面积14.14%;降水、干旱指数、排灌渠影响、潜在蒸散、温度是影响高砷地下水最重要的指标。研究认为,河套盆地的气候变量(降水、干旱指数)与含水层砷含量显著相关,控制高砷地下水在河套盆地的沉积中心地带发生季节性变化。

关键词: 地下水, 砷污染, 河套盆地, 随机森林, 季节变化, 风险分布

要点

(1) 建立随机森林模型,以气候因子为动态驱动,识别不同季节高砷概率分布。

(2) 气候变量(降水量、干旱指数)与含水层中的砷积累显著相关。

(3) 地下水砷高风险区集中于河套盆地的沉积中心地带,冬季高砷风险区面积小于夏季。

High Arsenic Risk Distribution Prediction of Groundwater in the Hetao Basin by Random Forest Modeling

ABSTRACT

BACKGROUND:

Arsenic pollution is a serious problem in shallow groundwater in the Hetao Basin, and has seriously affected the health of residents. The research on the distribution of high arsenic shallow groundwater in the Hetao Basin is limited by the sampling time and sample number.

OBJECTIVES:

To obtain a comprehensive understanding of the risk distribution characteristics and important influencing factors of high arsenic groundwater in different seasons in the region.

METHODS:

Based on 506 shallow groundwater samples and 9 surface environmental parameters as prediction variables, a random forest model was established to evaluate the importance of prediction variables and the impact of important variables on high arsenic groundwater. Taking the climate factors as the dynamic prediction variables, the probability distribution of high arsenic groundwater in different seasons was identified and thematic maps of risk areas were made.

RESULTS:

The results showed that the arsenic content of 506 groundwater samples ranged from 0.05 to 916.7μg/L with an overshoot rate (>10μg/L) of 50%. Groundwater arsenic risk areas were mainly distributed in the depositional center of the Hetao Basin, but the area of groundwater arsenic risk areas decreased by 1907km2 in winter, accounting for 14.14% of the total area. Precipitation and drought index, influence of drainage and irrigation channels, potential evapotranspiration and temperature were the most important indexes affecting the high arsenic groundwater in this area.

CONCLUSIONS:

In the Hetao Basin, climate variables (precipitation and drought index) are significantly correlated with arsenic accumulation in the aquifer, which controls the seasonal variation of groundwater with high arsenic content in the depositional center of the Hetao Basin.

KEY WORDS: groundwater, arsenic pollution, Hetao Basin, random forest, seasonal variation, risk distribution

HIGHLIGHTS

(1) A random forest model was established to identify the probability distribution of high arsenic areas in different seasons driven by climate factors.

(2) Climate variables (precipitation and drought index) were significantly correlated with arsenic accumulation in aquifers.

(3) High arsenic risk areas in groundwater were concentrated in the depositional center of the Hetao Basin, and the area of high arsenic risk areas in winter was smaller than that in summer.

本文参考文献

[1]

Polya D A, Middleton D R. Arsenic in drinking water: Sources & human exposure[M]//Bhattacharya P, Polya D A, Draganovic D. Best practice guide on the control of arsenic in drinking water (The 1st edition). London: International Water Association Publishing, 2017.

[2]

Tong J, Guo H, Wei C, et al. Arsenic contamination of the soil-wheat system irrigated with high arsenic groundwater in the Hetao Basin, Inner Mongolia, China[J].Science of the Total Environment, 2014, 496: 479-487. doi: 10.1016/j.scitotenv.2014.07.073

[3]

杨文蕾, 沈亚婷. 水稻对砷吸收的机理及控制砷吸收的农艺途径研究进展[J]. 岩矿测试, 2020, 39(4): 475-492.

Yang W L, Shen Y T. A review of research progress on the absorption mechanism of arsenic and agronomic pathways to control arsenic absorption[J]. Rock and Mineral Analysis, 2020, 39(4): 475-492.

[4]

Wang Y, Pi K, Fendorf S, et al. Sedimentogenesis and hydrobiogeochemistry of high arsenic Late Pleistocene-Holocene aquifer systems[J].Earth-Science Reviews, 2019, 189: 79-98. doi: 10.1016/j.earscirev.2017.10.007

[5]

Podgorski J, Berg M. Global threat of arsenic in ground-water[J].Science, 2020, 368: 845-850. doi: 10.1126/science.aba1510

[6]

Jia Y, Guo H, Jiang Y, et al. Hydrogeochemical zonation and its implication for arsenic mobilization in deep groundwaters near alluvial fans in the Hetao Basin, Inner Mongolia[J]. Journal of Hydrology, 2014, 518(Part C): 410-420.

[7]

曹文庚, 董秋瑶, 谭俊, 等. 河套盆地晚更新世以来黄河改道对高砷地下水分布的控制机制[J]. 南水北调与水利科技, 2021, 19(1): 140-150.

Cao W G, Dong Q Y, Tan J, et al. The mechanism of Yellow River diversion in controlling high arsenic groundwater distribution since the Late Pleistocene[J]. South-to-North Water Transfers and Water Science & Technology, 2021, 19(1): 140-150.

[8]

高存荣, 刘文波, 冯翠娥, 等. 干旱半干旱地区高砷地下水形成机理研究: 以中国内蒙古河套平原为例[J]. 地学前缘, 2014, 21(4): 13-29.

Gao C R, Liu W B, Feng C E, et al. Study on the formation mechanism of high arsenic groundwater in arid and semi-arid areas: Taking Hetao Plain in Inner Mongolia as an example[J]. Earth Science Frontier, 2014, 21(4): 13-29.

[9]

Cao W G, Guo H M, Zhang Y L, et al. Controls of paleochannels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China[J].Science of the Total Environment, 2018, 613-614: 958-968. doi: 10.1016/j.scitotenv.2017.09.182

[10]

Guo H M, Li X M, Xiu W, et al. Controls of organic matter bioreactivity on arsenic mobility in shallow aquifers of the Hetao Basin, P.R.China[J].Journal of Hydrology, 2019, 571: 448-459. doi: 10.1016/j.jhydrol.2019.01.076

[11]

李媛. 内蒙古河套盆地高砷含水系统的微生物特征及生物地球化学效应[D]. 北京: 中国地质大学(北京), 2016.

Li Y. Microbial characteristics and biogeochemical effects of high arsenic aquifer system in Hetao Basin, Inner Mongolia[D]. Beijing: China University of Geosciences (Beijing), 2016.

[12]

Shen M M, Guo H M, Jia Y F, et al. Partitioning and reactivity of iron oxide minerals in aquifer sediments hosting high arsenic groundwater from the Hetao Basin, P.R.China[J].Applied Geochemtry, 2018, 89: 190-201. doi: 10.1016/j.apgeochem.2017.12.008

[13]

Dietrich S, Bea S A, Weinzettel P, et al. Occurrence and distribution of arsenic in the sediments of a carbonate-rich unsaturated zone[J]. Environmental Earth Sciences, 2016, 75(2): 1-14.

[14]

高存荣. 河套平原地下水砷污染机理的探讨[J]. 中国地质灾害与防治学报, 1999, (2): 25-32.

Gao C R. Research on the mechanism of arsenic pollution in groundwater in the Hetao Plain, Inner Mongolia, China[J]. The Chinese Journal of Geological Hazard and Control, 1999, (2): 25-32.

[15]

Guo H M, Li Y, Zhao K, et al. Removal of arsenite from water by synthetic siderite: Behaviors and mechanisms[J].Journal of Hazardous Materials, 2011, 186(2-3): 1847-1854. doi: 10.1016/j.jhazmat.2010.12.078

[16]

Zhang Z, Guo H, Zhao W, et al. Influences of groundwater extraction on flow dynamics and arsenic levels in the western Hetao Basin, Inner Mongolia, China[J].Hydrogeology Journal, 2018, 26(5): 1499-1512. doi: 10.1007/s10040-018-1763-9

[17]

Ayotte J D, Nolan B T, Nucklos J R, et al. Modeling the probability of arsenic in groundwater in New England as a tool for exposure assessment[J]. Environmental Science & Technology, 2006, 40: 3578-3585.

[18]

Rodríguez-Lado L, Sun G, Berg M, et al. Groundwater arsenic contamination throughout China[J].Science, 2013, 341: 866-868. doi: 10.1126/science.1237484

[19]

Wu R H, Joel P, Michael B, et al. Geostatistical model of the spatial distribution of arsenic in groundwater in Gujarat State, India[J].Environmental Geochemistry and Health, 2021, 43: 2649-2664. doi: 10.1007/s10653-020-00655-7

[20]

Bretzler A, Lalanne F, Nikiema J, et al. Groundwater arsenic contamination in Burkina Faso, West Africa: Predicting and verifying regions at risk[J].Science of the Total Environment, 2017, 584-585: 958-970. doi: 10.1016/j.scitotenv.2017.01.147

[21]

苏彩红, 向娜, 陈广义, 等. 基于人工蜂群算法BP神经网络的水质评价模型[J]. 环境工程学报, 2012, 6(2): 699-704.

Su C H, Xiang N, Chen G Y, et al. Water quality evaluation model based on artificial bee colony algorithm and BP neural network[J]. Journal of Environmental Engineering, 2012, 6(2): 699-704.

[22]

He Z B, Wen X H, Liu H, et al. A comparative study of artificial neural networks, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semi-arid mountain region[J].Journal of Hydrology, 2014, 509: 379-386. doi: 10.1016/j.jhydrol.2013.11.054

[23]

Podgorski J E, Labhasetwar P, Saha D, et al. Prediction modeling and mapping of groundwater fluoride contamination throughout India[J].Environmental Science and Technology, 2018, 52(17): 9889-9898. doi: 10.1021/acs.est.8b01679

[24]

Iverson L R, Prasad A M, Matthews S N, et al. Estimating potential habitat for 134 eastern US tree species under six climate scenarios[J].Forest Ecology and Management, 2008, 254: 390-406. doi: 10.1016/j.foreco.2007.07.023

[25]

邓娅敏. 河套盆地西部高砷地下水系统中的地球化学过程研究[D]. 武汉: 中国地质大学(武汉), 2008.

Deng Y M. Study on geochemical process in high arsenic groundwater system in western Hetao Basin[D]. Wuhan: China University of Geosciences (Wuhan), 2008.

[26]

袁溶潇. 内蒙古河套盆地含水层沉积物可溶性组分与可溶性砷的分布规律研究[D]. 北京: 中国地质大学(北京), 2017.

Yuan R X. Soluble components of sediments and their relation with soluble arsenic in aquifers from the Hetao Basin, Inner Mongolia[D]. Beijing: China University of Geosciences (Beijing), 2017.

[27]

刘文波. 河套平原地下水化学特征研究[D]. 北京: 中国地质大学(北京), 2015.

Liu W B. Chemical characteristics of groundwater in Hetao Plain[D]. Beijing: China University of Geosciences (Beijing), 2015.

[28]

何薪. 河套平原农业灌溉影响下地下水中砷迁移富集规律研究[D]. 武汉: 中国地质大学(武汉), 2010.

He X. Study on the migration and enrichment law of arsenic in groundwater under the influence of agricultural irrigation in Hetao Plain[D]. Wuhan: China University of Geosciences (Wuhan), 2010.

[29]

Breiman L. Random forests[J].Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324

[30]

Fawcett T. An introduction to ROC analysis[J].Pattern Recognition Letters, 2006, 27(8): 861-874. doi: 10.1016/j.patrec.2005.10.010

[31]

Bindal S, Singh C K. Predicting groundwater arsenic contamination: Regions at risk in highest populated state of India[J].Water Research, 2019, 159: 65-76. doi: 10.1016/j.watres.2019.04.054

[32]

Podgorski J E, Eqani S A M A S, Khanam T, et al. Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley[J]. Science Advances, 2017, 3: 1-10.

[33]

Erickson, Elliott, Christenson, et al. Predicting geogenic arsenic in drinking water wells in glacial aquifers, North-Central USA: Accounting for depth-dependent features[J]. Water Resources Research, 2018, 54(12): 172-187, 10.

[34]

Zhang Q, Rodríguez-Lado L, Johnson C A, et al. Predicting the risk of arsenic contaminated groundwater in Shanxi Province, northern China[J].Environmental Pollution, 2012, 165: 118-123. doi: 10.1016/j.envpol.2012.02.020

[35]

Michael V S, Samantha C Y, Shawn G B, et al. Aquifer arsenic cycling induced by seasonal hydrologic changes within the Yangtze River Basin[J].Environmental Science & Technology, 2016, 50(7): 3521-3529.

[36]

Yadav I C, Devi N L, Singh S, et al. Spatial and temporal variation in arsenic in the groundwater of upstream of Ganges River Basin, Nepal[J].Environmental Earth Science, 2015, 73: 1265-1279. doi: 10.1007/s12665-014-3480-6

[37]

Alarcón-Herrera M T, Bundschuh J, Nath B, et al. Co-occurrence of arsenic and fluoride in groundwater of semi-arid regions in Latin America: Genesis, mobility and remediation[J].Journal of Hazardous Materials, 2013, 262: 960-969. doi: 10.1016/j.jhazmat.2012.08.005

[38]

Joel P, Wu R H, Biswajit C, et al. Groundwater arsenic distribution in India by machine learning geospatial modeling[J].Environmental Research and Public Health, 2020, 17: 7119-7135. doi: 10.3390/ijerph17197119

[39]

张巧凤, 刘桂香, 于红博, 等. 基于MOD16A2的锡林郭勒草原近14年的蒸散发时空动态[J]. 草地学报, 2016, 24(2): 286-293.

Zhang Q F, Liu G X, Yu H B, et al. Temporal and spatial dynamics of evapotranspiration in Xilingole grassland in recent 14 years based on MOD16A2[J]. Journal of Grassland, 2016, 24(2): 286-293.

[40]

闫俊杰, 吕光辉, 徐海量, 等. 2000-2014年塔里木河干流的植被覆盖与蒸散发时空变化及其关系[J]. 水土保持通报, 2018, 38(3): 248-255.

Yan J J, Lv G H, Xu H L, et al. Temporal and spatial changes of vegetation cover and evapotranspiration in the main stream of Tarim River from 2000 to 2014 and their relationship[J]. Bulletin of Water and Soil Conservation, 2018, 38(3): 248-255.

相似文献(共20条)

[1]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[2]

宋淑玲, 饶竹, 李松. 全国地下水调查中12种半挥发性必检组分的测定. 岩矿测试, 2008, 27(2): 91-94.

[3]

李泽岩, 黄福杨, 刘丹丹, 刘艳君, 刘菲. 海河流域滹沱河冲洪积扇地下水中农药污染及分布特征. 岩矿测试, 2019, 38(2): 186-194. doi: 10.15898/j.cnki.11-2131/td.201808030091

[4]

李丽君, 王海娇, 马健生. 下辽河平原地下水中挥发性有机物的污染特征及健康风险评价. 岩矿测试, 2021, 40(6): 930-943. doi: 10.15898/j.cnki.11-2131/td.202108200105

[5]

袁建, 王亚平, 许春雪, 代阿芳, 王苏明, 安子怡. 地下水中砷形态标准物质研制. 岩矿测试, 2012, 31(2): 331-337.

[6]

祁彦洁, 刘菲. 地下水中抗生素污染检测分析研究进展. 岩矿测试, 2014, 33(1): 67-73.

[7]

马健生, 王卓, 张泽宇, 刘强, 李丽君. 哈尔滨市地下水中29种抗生素分布特征研究. 岩矿测试, 2021, 40(6): 944-953. doi: 10.15898/j.cnki.11-2131/td.202101040001

[8]

甘露, 王苏明, 刘菲, 霍志彬. 地下水污染调查样品测试质量远程实时监控管理系统开发. 岩矿测试, 2010, 29(5): 571-574.

[9]

刘晓雯. 地下水污染调查中水样无机组分检测质量控制体系 的建立和应用. 岩矿测试, 2010, 29(5): 580-584.

[10]

李明礼, 柳诚, 王祝, 邬国栋, 夏鹏超. 地下水常见无机污染物研究进展. 岩矿测试, 2010, 29(5): 565-570.

[11]

赵庆令, 李清彩, 谢江坤, 史启朋, 陈丽娇. 鲁中南地区双村岩溶水系统地下水中化学致癌物和非致癌物的健康风险评价. 岩矿测试, 2016, 35(1): 90-97. doi: 10.15898/j.cnki.11-2131/td.2016.01.015

[12]

陶文靖, 黄勤, 李胜生. 顶空进样-气相色谱-质谱法测定地下水中25种挥发性有机污染物. 岩矿测试, 2010, 29(5): 543-546.

[13]

魏峰, 陈海英, 沈小明, 吕爱娟. 地下水中半挥发性有机污染物痕量分析的5个问题探讨. 岩矿测试, 2012, 31(6): 1043-1049.

[14]

余蕾, 张小毅. 气相色谱-三重四极杆质谱法测定地下水中44种有机物污染物. 岩矿测试, 2021, 40(3): 365-374. doi: 10.15898/j.cnki.11-2131/td.202008310120

[15]

宋淑玲, 郭晓辰, 胡小键, 李鸿枝. 气相色谱-高分辨质谱联用测定地下水中16种典型痕量含氯持久性有机污染物. 岩矿测试, 2013, 32(2): 313-318.

[16]

高翔云. 地下水污染调查中水样有机组分分析质量控制. 岩矿测试, 2010, 29(5): 593-596.

[17]

郭晓辰, 饶竹, 高冉. 气相色谱法测定地下水中拟除虫菊酯有机氯百菌清等24种农药残留. 岩矿测试, 2014, 33(3): 406-412.

[18]

周炼, 刘存富, 王佩仪. 地下水^32硅年龄的测定方法—液体闪烁计数法. 岩矿测试, 2000, (2): 97-100.

[19]

李松, 饶竹, 宋淑玲, 田芹, 赵威. 气相色谱-质谱在地下水检测过程中的重要性. 岩矿测试, 2010, 29(5): 518-522.

[20]

郭琳, 温宏利, 王苏明, 屈文俊, 曹亚萍. 地下水中无机多元素测定监控样的制备与应用. 岩矿测试, 2010, 29(5): 575-579.

计量
  • PDF下载量(2)
  • 文章访问量(431)
  • HTML全文浏览量(172)
  • 被引次数(0)
目录

Figures And Tables

基于随机森林建模预测河套盆地高砷地下水风险分布

付宇, 曹文庚, 张娟娟