【引用本文】 李坦平, 李爱阳, . 电感耦合等离子体串联质谱法分析凹凸棒黏土中的微量元素[J]. 岩矿测试, 2021, 40(2): 196-205. doi: 10.15898/j.cnki.11-2131/td.202004090043
LI Tan-ping , LI Ai-yang . Determination of Trace Elements in Attapulgite Clay by Inductively Coupled Plasma-Tandem Mass Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(2): 196-205. doi: 10.15898/j.cnki.11-2131/td.202004090043

电感耦合等离子体串联质谱法分析凹凸棒黏土中的微量元素

湖南工学院新型建筑材料研究院, 湖南 衡阳 421002

收稿日期: 2020-04-09  修回日期: 2020-07-30 

基金项目: 国家自然科学基金项目(81603400);湖南省自然科学基金项目(2019JJ60026);湖南省教育厅重点项目(18A428);湖南省应用特色学科材料科学与工程学科资助项目(湘教通[2018]469号);湖南省工程研究中心资助项目(湘发改委高技[2019]853号)

作者简介: 李坦平,教授,主要从事固体工业废弃物建材资源化利用研究。E-mail:hwl0466@163.com。

Determination of Trace Elements in Attapulgite Clay by Inductively Coupled Plasma-Tandem Mass Spectrometry

New Building materials Academy, Hunan Institute of Technology, Hengyang 421002, China

Received Date: 2020-04-09
Revised Date: 2020-07-30

摘要:凹凸棒黏土是具有层链状结构的含水富镁铝硅酸盐矿物,矿床成因不同导致凹凸棒黏土中微量元素的组成存在差异,其中Be、Cr、Ni、As、Cd、Sb、Hg、Pb会对健康和环境产生不利影响,而V、Mn、Co、Cu、Zn、Mo、Sn、Ba作为凹凸棒黏土的重要微量元素影响其性能和应用范围,因此,对凹凸棒黏土中微量元素进行精准分析可为凹凸棒黏土的高效增值深加工提供理论依据。采用电感耦合等离子体质谱法(ICP-MS)测定岩矿中微量元素具有检出限低和灵敏度高的特点,但因存在复杂质谱干扰即使采用碰撞反应池(CRC)技术也很难完全消除。本文应用电感耦合等离子体串联质谱法(ICP-MS/MS)来消除质谱干扰,建立了准确测定凹凸棒黏土中微量元素Be、V、Cr、Mn、Co、Ni、Cu、Zn、As、Mo、Cd、Sn、Sb、Ba、Hg、Pb含量的分析方法。实验中采用由硝酸、盐酸、氢氟酸组成的混合酸对凹凸棒黏土样品进行微波消解,不仅加快了样品的消解速度,而且保持了消解溶液中分析元素的稳定。针对分析过程中所面临的质谱干扰,在MS/MS模式下,通过向CRC内加入O2和NH3/He为反应气,利用质量转移反应生成相应的氧化物离子和团簇离子消除干扰,选择质量数相近且质谱行为相似的内标元素校正了基体效应,稳定了分析信号。应用本方法对国家标准参考物质玄武岩(GBW07105)中16种微量元素进行测定,分析元素的相对误差在-9.60%~8.21%之间,相对标准偏差(RSD) ≤ 5.93%。在选定的分析条件下,各元素的检出限为0.13~51.6ng/L。本方法有效减少了质谱干扰,提高了某些特定同位素在复杂介质中的准确性和灵敏度,适合凹凸棒黏土中16种微量元素的快速测定。

关键词: 凹凸棒黏土, 电感耦合等离子体串联质谱法, 微量元素, 质谱干扰, 反应气

Determination of Trace Elements in Attapulgite Clay by Inductively Coupled Plasma-Tandem Mass Spectrometry

KEY WORDS: attapulgite clay, inductively coupled plasma-tandem mass spectrometry, trace elements, spectral interference, reaction gas

本文参考文献

[1]

周苏闽,冯良东,王莉.化学沉积法制备凹凸棒土/银核壳结构棒状银粉[J].非金属矿,2011,34(4):15-18.

Zhou S,Feng L,Wang L.Preparation of attapulgite/Ag core-shell structure rod-like silver powder by electroless deposition[J].Non-Metallic Mines,2011,34(4):15-18.

[2]

杨敏,王丽娟,宋岩.凹凸棒石吸附重金属的研究进展[J].硅酸盐通报,2019,38(11):3445-3464.

Yang M,Wang L,Song Y.Research progress on heavy metals adsorption by attapulgite[J].Bulletin of the Chinese Ceramic Society,2019,38(11):3445-3464.

[3]

周灵群.凹凸棒石油脂脱色行为及其机理[J].食品科学,2019,40(3):89-93.

Zhou L.Adsorption behavior and mechanism of attapulgite when used in oil bleaching[J].Food Science,2019,40(3):89-93.

[4]

Junior E D,de Almeida J M F,do Nascimento Silva I,et al.pH-responsive release system of isoniazid using palygorskite as a nanocarrier[J].Journal Drug Delivery Science and Technology,2020,55:101399.

[5]

白国梁,陶海兵,蔡思敏,等.凹凸棒石(PG)负载V2O5催化剂脱除气态Hg0的研究[J].环境科学学报,2019,39(7):2369-2376.

Bai G,Tao H,Cai S,et al.Removal of vapor-phase Hg0 over a V2O5/PG catalyst[J].Acta Scientiae Circumstantiae,2019,39(7):2369-2376.

[6]

Aguzzi C,Cerezo P,Viseras C,et al.Use of clays as drug delivery systems:Possibilities and limitations[J].2007,36:22-36.

[7]

Ding C,Xiao S,Lin Y,et al.Attapulgite-supported nano-Fe0/peroxymonsulfate for quinclorac removal:Performance,mechanism and degradation pathway[J].Chemical Engineering Journal,2019,360:104-114.

[8]

Haden W L.Attapulgite:properties and uses[J].Clays and Clay Minerals,1961,10:284-290.

[9]

陈明岩,程大明,李玲,等.食品添加剂凹凸棒黏土的测定与表征[J].化学试剂,2011,33(3):236-238.

Chen M,Cheng D,Li L,et al.Determination and characterization of food additive attapulgite clay[J].Chemical Reagents,2011,33(3):236-238.

[10]

Yang H,Tang A,Ouyang J,et al.From natural atta-pulgite to mesoporous materials:Methodology,characterization and structural evolution[J].Journal of Physics Chemistry B,2010,114(7):2390-2398.

[11]

凌霞,吴洁,孟元华.电感耦合等离子体发射光谱法测定凹凸棒黏土中的多种金属元素[J].化学试剂,2012,34(6):529-531.

Lin X,Wu J,Meng Y.Determination of multi-metal in attapulgite by ICP-AES[J].Chemical Reagents,2012,34(6):529-531.

[12]

董学林,何海洋,储溱,等.碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素[J].岩矿测试,2019,38(6):620-630.

Dong X,He H,Chu Q,et al.Determination of rare earth elements in barite-associated rare earth ores by alkaline precipitation separation-inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis,2019,38(6):620-630.

[13]

Liu T,He T,Shi Q,et al.Rapid Determination of boron in 61 soil,sediment,and rock reference materials by ICP-MS[J].Atomic Spectroscopy,2019,40(2):55-62.

[14]

阳国运,唐裴颖,张洁,等.电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗[J].岩矿测试,2019,38(2):154-159.

Yang G,Tang P,Zhang J,et al.Determination of boron,iodine,tin and germanium in geochemical samples by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis,2019,38(2):154-159.

[15]

Zhang L Y,Fang M,Sun H L,et al.Analysis of iodine isotopes in travertine from baishuitai,Yunnan province,China[J].Atomic Spectroscopy,2020,41(5):181-187.

[16]

徐进力,邢夏,唐瑞玲,等.动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J].岩矿测试,2019,38(4):394-402.

Xu J,Xing X,Tang R,et al.Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J].Rock and Mineral Analysis,2019,38(4):394-402.

[17]

Doker S.Exploiting aerosol dilution for the determination of ultra-trace elements in honey by collision/reaction cell inductively coupled plasma mass spectrometry (CRC-ICP-MS) without thermal digestion[J].Analytical Methods,2017,9:1710-1717.

[18]

Fernandez S D,Encinar J R,Sanz-Medel A,et al.Determination of low B/Ca ratios in carbonates using ICP-QQQ[J].Geochemistry,Geophysics,Geosystems,2015,16(6):2005-2014.

[19]

Machado R C,Amaral C D B,Schiavo D,et al.Complex samples and spectral interferences in ICP-MS:Evaluation of tandem mass spectrometry for interference-free determination of cadmium,tin and platinum group elements[J]. Microchemical Journal,2017,130:271-275.

[20]

陈文,樊小伟,郭才女,等.电感耦合等离子体串联质谱法测定高纯稀土中铁的含量[J].分析化学,2019,47(3):403-409.

Chen W,Fan X,Guo C,et al.Determination of iron content in high purity rare earth by inductively coupled plasma-tandem mass spectrometry[J].Chinese Journal of Analytical Chemistry,2019,47(3):403-409.

[21]

Perez-Alvarez E P,Garcia R,Barrulas P,et al.Classification of wines according to several factors by ICP-MS multi-element analysis[J].Food Chemistry,2019,270:273-280.

[22]

Petrov P,Russell B,Douglas D N,et al.Interference-free determination of sub ng kg-1 levels of long-lived 93Zr in the presence of high concentrations (μg kg-1) of 93Mo and 93Nb using ICP-MS/MS[J].Analytical and Bioanalytical Chemistry,2017,410(3):1029-1037.

[23]

Xing S,Zhang W,Qiao J,et al.Determination of ultra-low level plutonium isotopes (239Pu,240Pu) in environmental samples with high uranium[J].Talanta,2018,189:357-364.

[24]

El-Eswed B I,Aldagag O M,Khalili F I,et al.Efficiency and mechanism of stabilization/solidification of Pb(Ⅱ),Cd(Ⅱ),Cu(Ⅱ),Th(Ⅳ) and U(Ⅵ) in metakaolin based geopolymers[J].Applied Clay Science,2017,140:148-156.

[25]

符靓,施树云,陈晓青.电感耦合等离子体串联质谱法测定活性白土中痕量毒理性元素[J].分析化学,2018,46(8):1253-1260.

Fu L,Shi S,Chen X.Accurate determination of trace toxic elements in activated clay using inductively coupled plasma tandem mass spectrometry[J].Chinese Journal of Analytical Chemistry,2018,46(8):1253-1260.

[26]

Kopp J F,Muller S M,Pohl G,et al.A quick and simple method for the determination of six trace elements in mammalian serum samples using ICP-MS/MS[J].Journal of Trace Elements in Medicine and Biology,2019,54:221-225.

[27]

王丙涛,赵旭,涂小珂,等.ICP-MS/MS检测食品中磷、硒、砷的含量[J].现代食品科技,2017,33(7):1-6.

Wang B,Zhao X,Tu X,et al.The determination of P,As and Se in food by triple quadrupole inductively coupled plasma mass spectrometry[J].Modern Food Science and Technology,2017,33(7):1-6.

[28]

Fu L,Xie H,Huang J,et al.Rapid determination of trace elements in serum of hepatocellular carcinoma patients by inductively coupled plasma tandem mass spectrometry[J].Analytica Chimica Acta,2020,1112:1-7.

[29]

Balcaen L,Bolea-Fernandez E,Resano M,et al.Inductively coupled plasma e Tandem mass spectrometry (ICP-MS/MS):A powerful and universal tool for the interference-free determination of (ultra) trace elements e A tutorial review[J].Analytica Chimica Acta,2015,894:7-19.

[30]

Amaral C D B,Amais R S,Fialho L L,et al.A novel strategy to determine As,Cr,Hg and V in drinking water by ICP-MS/MS[J].Analytical Methods,2015,7:1215-1220.

[31]

Walkner C,Gratzer R,Meisel T,et al.Multi-element analysis of crude oils using ICP-QQQ-MS[J].Organic Geochemistry,2017,103:22-30.

[32]

Amaral C D B,Machado R C,Virgilio A,et al.Critical evaluation of internal standardization in ICP tandem mass spectrometry and feasibility of the oxygen reaction for boron determination in plants[J].Journal of Analytical Atomic Spectrometry,2016,31(6):1179-1184.

[33]

Fu L,Xie H,Shi S.Multielement analysis of Zanthoxylum bungeanum Maxim. essential oil using ICP-MS/MS[J].Analytical and Bioanalytical Chemistry,2018,410:3769-3778.

[34]

Sesi N N,Hieftje G M.Studies into the interelement matrix effect in inductively coupled plasma spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy,1996,51(13):1601-1628.

[35]

张杨赞.高盐样品基体效应的研究及SPE-ICP-MS分析方法的建立[D].天津:天津大学,2019:23-35. Zhang Y.The research on matrix effect of high salt samples and the establishment of analysis method using solid phase extraction-inductively coupled plasma mass spectrometry[D].Tianjin:Tianjin University,2019:23

-35.

[36]

Virgilio A,Amais R S,Amaral C D B,et al.Reactivity and analytical performance of oxygen as cell gas in inductively coupled plasma tandem mass spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy,2016,126:31-36.

[37]

江波,黄建华.应用ICP-MS/MS准确测定紫苏好油中的重金属元素[J].中国粮油快报,2019,34(1):125-130.

Jiang B,Huang J.Accurately determination the heavy metal elements in perilla seed oil applying ICP-MS/MS[J].Journal of the Chinese Cereals and Oil Association,2019,34(1):125-130.

[38]

刘元元,胡静宇.电感耦合等离子体串联质谱法测定高纯钼中痕量镉[J].冶金分析,2018,38(5):1-6.

Liu Y,Hu J.Determination of trace cadmium in high-purity molybdenum by inductively coupled plasma tandem mass spectrometry[J].Metallurgical Analysis,2018,38(5):1-6.

[39]

Balcaen L,Bolea-Fernandez E,Resano M,et al.Accurate determination of ultra-trace levels of Ti in blood serum using ICP-MS/MS[J].Analytica Chimica Acta,2014,809:1-8.

相似文献(共18条)

[1]

李坦平, 吴宜, 曾利群, 娄晓明, 李爱阳. 电感耦合等离子体串联质谱法测定电解二氧化锰废渣浸出液中的重金属元素. 岩矿测试, 2020, 39(5): 682-689. doi: 10.15898/j.cnki.11-2131/td.201911230162

[2]

桂建业, 张莉, 张永涛, 左海英, 李晓亚, 田来生, 赵国兴, 邢晨曦. 以分析有机磷农药为例研究多反应气-负化学电离源质谱的行为. 岩矿测试, 2012, 31(5): 863-867.

[3]

林伟龙, 王正海, 王娟, 蒋丽怡, 范朝焰. 电感耦合等离子体质谱测定灌木枝叶中微量元素的样品预处理方法研究. 岩矿测试, 2015, 34(4): 430-435. doi: 10.15898/j.cnki.11-2131/td.2015.04.009

[4]

熊英, 吴赫, 王龙山. 电感耦合等离子体质谱法同时测定铜铅锌矿石中微量元素镓铟铊钨钼的干扰消除. 岩矿测试, 2011, 30(1): 7-11.

[5]

梁细荣, 李献华. 激光探针等离子体质谱同时测定锆石微区铀—铅年龄及微量元素. 岩矿测试, 1999, (4): 253-258.

[6]

孙德忠, 安子怡, 许春雪, 王苏明, 王亚平. 四种前处理方法对电感耦合等离子体质谱测定植物样品中27种微量元素的影响. 岩矿测试, 2012, 31(6): 961-966.

[7]

郭东旭, 刘琰, 李自静, 孙东询, 王浩. 应用电感耦合等离子体质谱技术研究牦牛坪矿床霓长岩化蚀变矿物微量元素特征. 岩矿测试, 2020, 39(6): 896-907. doi: 10.15898/j.cnki.11-2131/td.202005060003

[8]

刘曙, 沈劼, 周海明, 诸秀芬, 朱志秀, 李晨, 兰超. 电感耦合等离子体质谱-原子荧光光谱法研究上海口岸进口印度尼西亚煤炭微量元素的赋存形态特征. 岩矿测试, 2015, 34(4): 436-441. doi: 10.15898/j.cnki.11-2131/td.2015.04.010

[9]

刘洪青, 孙月婷, 时晓露, 章勇. 微波消解-电感耦合等离子体质谱法测定生物样品中14个微量元素. 岩矿测试, 2008, 27(6): 427-430.

[10]

姜贞贞, 刘高令, 王祝, 李明礼, 卓玛曲西, 邵蓓, 董锐, 王伟. 电感耦合等离子体质谱法测定高海拔地区地热水中的微量元素. 岩矿测试, 2016, 35(5): 475-480. doi: 10.15898/j.cnki.11-2131/td.2016.05.005

[11]

刘先国, 方金东. 电感耦合等离子体原子发射光谱法测定硅铁中微量元素. 岩矿测试, 2002, (1): 63-65.

[12]

王松君, 常平, . 电感耦合等离子体原子发射光谱法测定黄铁矿中微量元素. 岩矿测试, 2002, (4): 304-306.

[13]

张德贤. 磁铁矿中微量元素的激光剥蚀-电感耦合等离子体质谱分析方法探讨. 岩矿测试, 2012, 31(1): 120-126.

[14]

杨小莉, 杨小丽, 李小丹, 邵鑫, 杨梅. 敞开酸溶-电感耦合等离子体质谱法同时测定钨矿石和锡矿石中14种微量元素. 岩矿测试, 2014, 33(3): 321-326.

[15]

张莉娟, 徐铁民, 方蓬达, 魏双. 超细固体悬浮液进样-电感耦合等离子体质谱法测定土壤中的微量元素. 岩矿测试, 2019, 38(2): 147-153. doi: 10.15898/j.cnki.11-2131/td.201712190195

[16]

刘昌岭, 林学辉. 单道扫描电感耦合等离子体发射光谱法测定珊瑚礁中主量和微量元素. 岩矿测试, 2003, (3): 225-227.

[17]

应立娟, 林彬, 王立强, 李超, 王阔. 应用电感耦合等离子体质谱法研究西藏甲玛超大型铜多金属矿床辉钼矿稀土元素和微量元素地球化学特征. 岩矿测试, 2015, 34(3): 366-374. doi: 10.15898/j.cnki.11-2131/td.2015.03.018

[18]

汪静玲, 覃然, 唐艳霞, 黄玉龙, 袁爱萍. 电感耦合等离子体发射光谱法测定锑精矿中多种微量元素. 岩矿测试, 2008, 27(4): 316-318.

计量
  • PDF下载量(10)
  • 文章访问量(552)
  • 被引次数(0)
目录

Figures And Tables

电感耦合等离子体串联质谱法分析凹凸棒黏土中的微量元素

李坦平, 李爱阳