【引用本文】 雷占昌, 韩斯琴图, 蒋常菊, 等. 过氧化钠碱熔-电感耦合等离子体质谱法测定原生矿石中的锡[J]. 岩矿测试, 2019, 38(3): 326-332. doi: 10.15898/j.cnki.11-2131/td.201812030127
LEI Zhan-chang, HAN Si-qin-tu, JIANG Chang-ju, et al. Determination of Tin in Primary Ores by Inductively Coupled Plasma-Mass Spectrometry with Sodium Peroxide Alkali Fusion[J]. Rock and Mineral Analysis, 2019, 38(3): 326-332. doi: 10.15898/j.cnki.11-2131/td.201812030127

过氧化钠碱熔-电感耦合等离子体质谱法测定原生矿石中的锡

青海省核工业地质局检测试验中心, 青海 西宁 810016

收稿日期: 2018-12-03  修回日期: 2019-03-09  接受日期: 2019-04-09

作者简介: 雷占昌, 硕士, 工程师, 主要研究方向为环境分析检测和矿物资源利用。E-mail:512974381@qq.com

Determination of Tin in Primary Ores by Inductively Coupled Plasma-Mass Spectrometry with Sodium Peroxide Alkali Fusion

Testing Center of Qinghai Nuclear Industry Geological Bureau, Xining 810016, China

Received Date: 2018-12-03
Revised Date: 2019-03-09
Accepted Date: 2019-04-09

摘要:原生锡矿石主要存在的矿床类型有矽卡岩型锡矿、斑岩型锡矿、锡石硅酸盐脉型锡矿、锡石硫化物脉型锡矿、石英脉及云英岩型锡矿。锡矿石一般不溶于盐酸、硝酸及王水体系,采用硫酸、氢氟酸处理时无法全部溶解。苯芴铜分光光度法和碘量法等传统测试方法存在受样品中伴生元素干扰大、稳定性差、检出限高、分析效率低等不足。本文建立了电感耦合等离子体质谱法测定原生矿石中锡元素含量的分析方法,用过氧化钠对样品进行熔融分解处理,热水浸取后用酒石酸-盐酸酸化,采用铑作为内标进行仪器信号漂移校正,同时用高倍稀释的方式来克服基体干扰。方法检出限为0.1μg/g,精密度小于5%,最低检出浓度为0.4μg/g,测试范围为12.5~12700μg/g。本方法操作简便,分析速度和数据质量都优于传统分析方法。

关键词: 锡矿石, 电感耦合等离子体质谱法, 过氧化钠, 酒石酸-盐酸酸化

要点

(1) 采用过氧化钠碱熔ICP-MS准确测定矿石中的锡。

(2) 采用高倍稀释和内标的方法克服基体干扰。

(3) 过氧化钠碱熔与酒石酸-盐酸酸化避免了矿石溶解不完全、元素损失、锡易水解等缺点。

Determination of Tin in Primary Ores by Inductively Coupled Plasma-Mass Spectrometry with Sodium Peroxide Alkali Fusion

ABSTRACT

BACKGROUND:

The main types of primary tin ore occur in skarn, porphyry, cassiterite silicate vein, cassiterite sulfide vein, quartz vein and greisen tin deposits. Tin ores are generally insoluble in hydrochloric acid, nitric acid and aqua regia, and tin ores cannot be dissolved completely when treated with sulfuric acid or hydrofluoric acid. Traditional measurement methods such as phenylfluorone-cetyltrimethyl ammonium bromide spectrophotometry and iodometry have disadvantages, such as the serious interference of the associated elements in the sample, poor stability, high detection limit and low analysis efficiency.

OBJECTIVES:

To establish a method for the determination of tin in primary ore by Inductively Coupled Plasma-Mass Spectrometry.

METHODS:

The sample was melted and decomposed by sodium oxide, and leached by hot water, followed by tartaric acid and hydrochloric acid acidification. 103Rh was used as the internal standard element to correct instrument signal drift, and the matrix effect was overcome by high-dilution factors.

RESULTS:

The detection limit of the method was 0.1μg/g for tin, the precision was less than 5%, the minimum detection concentration was 0.4μg/g, and the measurement range was 12.5-12700μg/g.

CONCLUSIONS:

The method has simple pretreatment and operation. The analysis efficiency and data quality are an improvement over traditional methods.

KEY WORDS: tin ore, Inductively Coupled Plasma-Mass Spectrometry, sodium peroxide, tartaric acid-hydrochloric acid acidification

HIGHLIGHTS

(1) The content of tin in primary ores was determined by alkali fusion with sodium peroxide.

(2) The interference of the matrix was overcome by multiple dilution and the application of an internal standard.

(3) Alkali fusion by sodium peroxide and tartaric acid-hydrochloric acid acidification can avoid incomplete digestion of ore, loss of elements and easy hydrolysis of tin.

本文参考文献

[1]

张颖, 宫嘉辰. 铝片还原-碘量法测定银锡二元合金中锡[J]. 有色矿冶, 2017, 33(3): 59-61. doi: 10.3969/j.issn.1007-967X.2017.03.014

Zhang Y, Gong J C. Determination of tin silver tin binary alloy by aluminum sheet reduction-iodometry[J].Non-Ferrous Mining and Metallurgy, 2017, 33(3): 59-61. doi: 10.3969/j.issn.1007-967X.2017.03.014

[2]

何小虎, 周素莲, 韦莉, 等. 碘量法测定铟锡氧化物靶材废料中锡[J]. 冶金分析, 2013, 33(9): 65-69.

He X H, Zhou S L, Wei L, et al. Determination of tin in indium tin oxide target waste by iodometry[J]. Metallurgical Analysis, 2013, 33(9): 65-69.

[3]

叶家瑜. 区域地球化学勘查样品分析方法[M] . 北京: 地质出版社, 2004

Ye J Y. Sample Analysis Method for Regional Geochemical Exploration[M] . Beijing: Geological Publishing House, 2004
[4]

胡永玫. 碘量法测定掺锑二氧化锡粉中锡[J]. 冶金分析, 2018, 38(11): 66-70.

Hu Y M. Determination of tin in antimony-doped tin oxide powder by iodometry[J]. Metallurgical Analysis, 2018, 38(11): 66-70.

[5]

苏洋, 刘红英. 苯芴酮-溴化十六烷基三甲基铵分光光度法测定钛铁中锡[J]. 冶金分析, 2015, 35(4): 65-76.

Su Y, Liu H Y. Determination of tin in ferrotitanium by phenylfluorone-cetyl trimethyi ammonium bromide spectrophotometry[J]. Metallurgical Analysis, 2015, 35(4): 65-76.

[6]

谭仪文. 苯芴酮-溴代十六烷基三甲胺分光光度法测定析出铅中的锡[J]. 中国有色冶金, 2005, 4(2): 23-25. doi: 10.3969/j.issn.1672-6103.2005.02.006

Tan Y W. Determining tin in deposited lead by benzfluorenone-bromo-hexadecyl-trimethylamine spectrophotometry[J].China Nonferrous Metallurgy, 2005, 4(2): 23-25. doi: 10.3969/j.issn.1672-6103.2005.02.006

[7]

姚建贞, 郝志红, 唐瑞玲, 等. 固体发射光谱法测定地球化学样品中的高含量锡[J]. 光谱学与光谱分析, 2013, 33(11): 3124-3127. doi: 10.3964/j.issn.1000-0593(2013)11-3124-04

Yao J Z, Hao Z H, Tang R L, et al. Determination of high content of tin in geochemical samples by solid emission spectrometry[J].Spectroscopy and Spectral Analysis, 2013, 33(11): 3124-3127. doi: 10.3964/j.issn.1000-0593(2013)11-3124-04

[8]

刘江斌, 武永芝. 原子发射光谱法快速测定矿石中锡[J]. 冶金分析, 2013, 33(3): 65-68. doi: 10.3969/j.issn.1000-7571.2013.03.012

Liu J B, Wu Y Z. Rapid determination of tin in ore by atomic emission spectrometry[J].Metallurgical Analysis, 2013, 33(3): 65-68. doi: 10.3969/j.issn.1000-7571.2013.03.012

[9]

辛文芳, 李伟, 乌晓蒙, 等. 发射光谱法测多目标区域地球化学调查中银、硼、锡三元素的分析总结[J]. 地质与资源, 2016, 25(4): 401-403. doi: 10.3969/j.issn.1671-1947.2016.04.016

Xin W F, Li W, Wu X M, et al. Determination of silver, boron and tin from multi-purpose regional geochemical survey by emission spectrometry[J].Geology and Resources, 2016, 25(4): 401-403. doi: 10.3969/j.issn.1671-1947.2016.04.016

[10]

胡长春, 王沿方, 陈作王, 等. 电感耦合等离子体原子发射光谱法测定锡铅合金中的锡[J]. 化学分析计量, 2018, 27(5): 72-75. doi: 10.3969/j.issn.1008-6145.2018.05.017

Hu C C, Wang Y F, Chen Z W, et al. Determination of tin in tin-lead alloy by inductively coupled plasma atomic emission spectrometry[J].Chemical Analysis and Meterage, 2018, 27(5): 72-75. doi: 10.3969/j.issn.1008-6145.2018.05.017

[11]

李超, 刘英波, 韩豫萍, 等. 发射光谱法测定地球化学物料中的微量银锡硼[J]. 云南冶金, 2018, 47(3): 84-88.

Li C, Liu Y B, Han Y P, et al. The determination of trace amount silver, tin, boron in geochemical materials by emission spectrography[J]. Yunnan Metallurgy, 2018, 47(3): 84-88.

[12]

Roncevic S, Nemet I, Svedruzic L P, et al. Chemical vapour generation for tin determination in high-content calcium matrix by inductively coupled plasma atomic emission spectrometry[J].Croatica Chemica Acta, 2014, 87(1): 17-22. doi: 10.5562/cca2259

[13]

Afonso D D, Baytak S, Arslan Z, et al. Simultaneous generation of hydrides of bismuth, lead and tin in the presence of ferricyanide and application to determination in biominerals by ICP-AES[J].Journal of Analytical Atomic Spectrometry, 2010, 25(5): 726-729. doi: 10.1039/b920280c

[14]

Uemoto M, Nagaoka M, Fujinuma H, et al. Interlaboratory testing for the determination of trace amounts of tin and lead in magnesium and magnesium alloys by inductively coupled plasma atomic emission spectrometry[J].Analytical Sciences, 2009, 25(5): 717-721. doi: 10.2116/analsci.25.717

[15]

陈安明. 电感耦合等离子体原子发射光谱法测定碳钢及生铁中痕量砷锑铋锡铅[J]. 冶金分析, 2007, 27(3): 68-70. doi: 10.3969/j.issn.1000-7571.2007.03.016

Chen A M. Determination of trace As, Sb, Bi, Sn and Pb in steel and pig iron by inductively coupled plasma-atomic emission spectrometry[J].Metallurgical Analysis, 2007, 27(3): 68-70. doi: 10.3969/j.issn.1000-7571.2007.03.016

[16]

Seco-Gesto E M, Moreda-Pineiro A, Bermejo-Barrera A, et al. Multi-element determination in raft mussels by fast microwave-assisted acid leaching and inductively coupled plasma-optical emission spectrometry[J].Talanta, 2007, 72(3): 1178-1185. doi: 10.1016/j.talanta.2007.01.009

[17]

陈波, 胡兰, 陈园园, 等. 地质样品中总锡测定方法的研究进展[J]. 理化检验(化学分册), 2017, 53(2): 236-241.

Chen B, Hu L, Chen Y Y, et al. Recent progress of research on methods for determination of total tin in geological samples[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(2): 236-241.

[18]

郝原芳, 刘新, 宋丽华, 等. 电感耦合等离子体质谱法测定铅合金中的微量杂质元素镉和锡[J]. 岩矿测试, 2016, 35(4): 378-383.

Hao Y F, Liu X, Song L H, et al. Determination of trace cadmium and tin in lead alloys by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2016, 35(4): 378-383.

[19]

罗艳, 杨侨. 碱熔、分离沉淀-电感耦合等离子体质谱法快速测定地球化学样品中的锡[J]. 分析试验室, 2017, 36(7): 827-830.

Luo Y, Yang Q. Alkaline fusion, separate precipitation-inductively coupled plasma spectrometry and rapid measurement of tin from planet chemical samples[J]. Chinese Journal of Analysis Laboratory, 2017, 36(7): 827-830.

[20]

侯艳霞, 刘庆彬, 胡净宇, 等. 电感耦合等离子体质谱法测定锡粉基体的记忆效应研究[J]. 冶金分析, 2015, 35(12): 1-4.

Hou Y X, Liu Q B, Hu J Y, et al. Study on memory effect of tin powder matrix by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2015, 35(12): 1-4.

[21]

王铁, 亢德华, 于媛君, 等. 电感耦合等离子体质谱法测定锰铁中痕量铅锡锑[J]. 冶金分析, 2013, 33(5): 13-16.

Wang T, Kang D H, Yu Y J, et al. Determination of trace lead, tin and antimony in ferromanganese by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2013, 33(5): 13-16.

[22]

Hosick T J, Ingamells R L, Machemer S D, et al. Determina-tion of tin in soil by continuous hydride generation and inductively coupled plasma mass spectrometry[J].Analytica Chimica Acta, 2002, 456(2): 263-269. doi: 10.1016/S0003-2670(02)00049-1

[23]

Brügmann G, Berger D, Pernicka E, et al. Determination of the tin stable isotopic composition in tin-bearing metals and minerals by MC-ICP-MS[J].Geostandards and Geoanalytical Research, 2017, 41(3): 437-448. doi: 10.1111/ggr.2017.41.issue-3

[24]

Latkoczy C, Prohaska T, Stingeder G, et al. Simultaneous multi-element analysis of trace elements in soil samples by means of high-resolution inductively coupled plasma sector field mass spectrometry (SF-ICP-MS)[J].Fresenius Journal of Analytical Chemistry, 2000, 368(2-3): 256-262. doi: 10.1007/s002160000432

[25]

Duan H, Gong Z, Yang S, et al. Online photochemical vapour generation of inorganic tin for inductively coupled plasma mass spectrometric detection[J].Journal of Analytical Atomic Spectrometry, 2015, 30(2): 410-416. doi: 10.1039/C4JA00249K

[26]

黄超冠, 蒙义舒, 郭焕花, 等. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铝合金中的铬铁钼硅[J]. 岩矿测试, 2018, 37(1): 30-35.

Huang C G, Meng Y S, Guo H H, et al. Determination of chromium, iron, molybdenum and silicon in Ti-Al alloy by inductively coupled plasma-optical emission spectrometry with sodium peroxide alkali fusion[J]. Rock and Mineral Analysis, 2018, 37(1): 30-35.

[27]

王凤祥. 电感耦合等离子体原子发射光谱法测定锡矿石中锡[J]. 冶金分析, 2017, 37(11): 59-63.

Wang F X. Determination of tin in tin ore by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2017, 37(11): 59-63.

[28]

黎卫亮, 程秀花, 李忠煜, 等. 碱熔共沉淀-电感耦合等离子体质谱法测定橄榄岩中的稀土元素[J]. 岩矿测试, 2017, 36(5): 468-473.

Li W L, Cheng X H, Li Z Y, et al. Determination of rare earth elements in peridotite by inductively coupled plasma-mass spectrometry after alkali fusion and Mg(OH)2 and Fe(OH)3 coprecipitation[J]. Rock and Mineral Analysis, 2017, 36(5): 468-473.

[29]

刘艳花, 孙湘莉. 莫桑比克某重砂矿选冶流程样品中钛和铬的联合测定[J]. 冶金分析, 2017, 37(7): 37-44.

Liu Y H, Sun X L. Combined determination of titanium and chromium in the samples from the flotation-metallurgy process of heavy placer in Mozambique[J]. Metallurgical Analysis, 2017, 37(7): 37-44.

[30]

王小强, 夏辉, 秦九红, 等. 过氧化钠碱熔-电感耦合等离子体发射光谱法测定多金属矿中的锡钨钛等主次量成分[J]. 岩矿测试, 2017, 36(1): 52-58.

Wang X Q, Xia H, Qin J H, et al. Determination of Sn, W, Ti and other elements in polymetallic ore by inductively coupled plasma-optical emission spectrometry with sodium peroxide fusion[J]. Rock and Mineral Analysis, 2017, 36(1): 52-58.

[31]

李冰,杨红霞. 电感耦合等离子体质谱原理和应用[M] . 北京: 地质出版社, 2005

Li B,Yang H X. Principle and Application of Inductively Coupled Plasma-Mass Spectrometry[M] . Beijing: Geological Publishing House, 2005
[32]

杨惠玲, 夏辉, 杜天军, 等. 电感耦合等离子体发射光谱法同时测定锡矿石中锡钨钼铜铅锌[J]. 岩矿测试, 2013, 32(6): 887-892.

Yang H L, Xia H, Du T J, et al. Simultaneous determination of Sn, W, Mo, Cu, Pb and Zn in tin ores by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2013, 32(6): 887-892.

[33]

张雪梅, 张勤. 发射光谱法测定勘查地球化学样品中银硼锡钼铅[J]. 岩矿测试, 2006, 25(4): 323-326.

Zhang X M, Zhang Q. Determination of silver, boron, tin, molybdenum and lead in geochemical exploration samples by emission spectrometry[J]. Rock and Mineral Analysis, 2006, 25(4): 323-326.

[34]

杨小莉, 杨小丽, 李小丹, 等. 敞开酸溶-电感耦合等离子体质谱法同时测定钨矿石和锡矿石中14种微量元素[J]. 岩矿测试, 2014, 33(3): 321-326.

Yang X L, Yang X L, Li X D, et al. Simultaneous determination of 14 trace elements in and tin ore with open acid digestion by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2014, 33(3): 321-326.

相似文献(共19条)

[1]

杨小莉, 杨小丽, 李小丹, 邵鑫, 杨梅. 敞开酸溶-电感耦合等离子体质谱法同时测定钨矿石和锡矿石中14种微量元素. 岩矿测试, 2014, 33(3): 321-326.

[2]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[3]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[4]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[5]

杨惠玲, 夏辉, 杜天军, 白露, 秦九红, 铁锦林. 电感耦合等离子体发射光谱法同时测定锡矿石中锡钨钼铜铅锌. 岩矿测试, 2013, 32(6): 887-892.

[6]

李冰, 王蕾, 何红蓼. 碱熔沉淀-等离子体质谱法测定地质样品中的多元素. 岩矿测试, 2003, (2): 86-92.

[7]

王琰, 孙洛新, 张帆, 张华, 陈志慧. 电感耦合等离子体发射光谱法测定含刚玉的铝土矿中硅铝铁钛. 岩矿测试, 2013, 32(5): 719-723.

[8]

郭振华, 何汉江, 田凤英. 混合酸分解-电感耦合等离子体质谱法测定磷矿石中15种稀土元素. 岩矿测试, 2014, 33(1): 25-28.

[9]

马生凤, 赵文博, 朱云, 孙红宾, 王蕾, 温宏利. 碘化氨除锡后封闭酸溶-电感耦合等离子体质谱测定锡矿石中的共生和伴生元素. 岩矿测试, 2018, 37(6): 650-656. doi: 10.15898/j.cnki.11-2131/td.201804190047

[10]

陈贺海, 鲍惠君, 付冉冉, 应海松, 芦春梅, 金献忠, 肖达辉. 微波消解-电感耦合等离子体质谱法测定铁矿石中铬砷镉汞铅. 岩矿测试, 2012, 31(2): 234-240.

[11]

陈贺海, 荣德福, 付冉冉, 余清, 廖海平, 任春生, 鲍惠君. 微波消解-电感耦合等离子体质谱法测定铁矿石中15个稀土元素. 岩矿测试, 2013, 32(5): 702-708.

[12]

王妍力, 罗明标, 柯麟, 徐志良, 方小伟. 氧化镁烧结-电感耦合等离子体质谱法测定砂岩型铀矿中的痕量铼. 岩矿测试, 2016, 35(4): 373-377. doi: 10.15898/j.cnki.11-2131/td.2016.04.006

[13]

王君玉, 吴葆存, 李志伟, 韩敏, 钟莅湘. 敞口酸溶-电感耦合等离子体质谱法同时测定地质样品中45个元素. 岩矿测试, 2011, 30(4): 440-445.

[14]

成学海, 夏传波, 郑建业, 张文娟, 刘晶. 封闭压力酸溶-电感耦合等离子体质谱法同时测定电气石中29种元素. 岩矿测试, 2017, 36(3): 231-238. doi: 10.15898/j.cnki.11-2131/td.201609220143

[15]

吴磊, 曾江萍, 刘义博, 吴良英, 张莉娟, 郝爽, 王家松. 硼酸溶液敞口酸溶-电感耦合等离子体质谱法测定萤石中稀土元素. 岩矿测试, 2014, 33(1): 20-24.

[16]

唐碧玉, 施意华, 杨仲平, 邱丽, 古行乾, 彭光菊. 灰化酸溶-电感耦合等离子体质谱法测定煤炭中的镓锗铟. 岩矿测试, 2018, 37(4): 371-378. doi: 10.15898/j.cnki.11-2131/td.201711250186

[17]

甘露, 罗代洪, 吴淑琪. 钨矿石和锡矿石化学成分分析能力验证结果评价和离群值原因. 岩矿测试, 2015, 34(1): 111-117. doi: 10.15898/j.cnki.11-2131/td.2015.01.015

[18]

张保科, 温宏利, 王蕾, 马生凤, 巩爱华. 封闭压力酸溶-盐酸提取-电感耦合等离子体质谱法测定地质样品中的多元素. 岩矿测试, 2011, 30(6): 737-744.

[19]

熊英, 吴峥, 董亚妮, 裴若会, 刘晓艳, 吴赫, 张艳. 封闭消解-阳离子交换分离-电感耦合等离子体质谱法测定铜铅锌矿石中的铼. 岩矿测试, 2015, 34(6): 623-628. doi: 10.15898/j.cnki.11-2131/td.2015.06.004

计量
  • PDF下载量(31)
  • 文章访问量(210)
  • HTML全文浏览量(29)
  • 被引次数(0)
目录

Figures And Tables

过氧化钠碱熔-电感耦合等离子体质谱法测定原生矿石中的锡

雷占昌, 韩斯琴图, 蒋常菊, 梁慧贞