【引用本文】 李伟, 于长琦, 曾载淋, 等. 赣南狮吼山硫铁-钨多金属矿床H-O-S同位素组成特征[J]. 岩矿测试, 2018, 37(6): 713-720. doi: 10.15898/j.cnki.11-2131/td.201712210197
LI Wei, YU Chang-qi, ZENG Zai-lin, et al. Hydrogen-Oxygen-Sulfur Isotope Composition of Shihoushan Pyrite and Tungsten Polymetallic Deposit, Southern Jiangxi[J]. Rock and Mineral Analysis, 2018, 37(6): 713-720. doi: 10.15898/j.cnki.11-2131/td.201712210197

赣南狮吼山硫铁-钨多金属矿床H-O-S同位素组成特征

江西省地质矿产勘查开发局赣南地质调查大队, 江西 赣州 341000

收稿日期: 2017-12-21  修回日期: 2018-04-10  接受日期: 2018-07-06

基金项目: 中国地质调查局地质调查工作项目“江西于都银坑-宁都青塘地区金银多金属矿整装勘查区矿产调查与找矿预测”(121201004000150017-14,121201004000160901-13,121201004000160901-14)

作者简介: 李伟, 硕士, 工程师, 主要从事矿产勘查与普查工作。E-mail:liweicdut@qq.com

Hydrogen-Oxygen-Sulfur Isotope Composition of Shihoushan Pyrite and Tungsten Polymetallic Deposit, Southern Jiangxi

Geological Survey Team of Gannan, Bureau of Geology and Mineral Exploration & Development of Jiangxi Province, Ganzhou 341000, China

Received Date: 2017-12-21
Revised Date: 2018-04-10
Accepted Date: 2018-07-06

摘要:狮吼山硫铁-钨多金属矿床位于银坑-青塘整装勘查区北部,是赣南地区唯一大型硫铁矿床。磁黄铁矿-黄铁矿(-黄铜矿-白钨矿)矿体赋存于石炭系梓山组上段地层中含铁、含钙层位,主要形成于石英-硫化物阶段。本文通过分析原生矿石矿物中H-O-S同位素组成特征,结合Pb同位素和成矿年代测试结果,探讨成矿流体来源及成矿演化过程。矿石硫化物中δ34S组成特征(-5.50‰~-0.20‰,集中于-3.0‰~0.0‰)显示,硫源以岩浆硫为主,较宽的变化范围预示成矿流体遭受了叠加和改造作用。δD-δ18O同位素组成主要集中于岩浆水与变质水重叠区域(δD=-74.4‰~-48.0‰,δ18OH2O=3.76‰~10.86‰),说明成矿流体以岩浆水和变质水为主,后期有少量的天水混入。综合分析认为,该矿床成矿流体主要来自深部岩浆水,岩浆热液与含钙地层的接触交代作用形成大规模变质流体,再加上少量的天水混入,流体间的不混溶作用使成矿物质在岩体与含钙层位接触部位富集沉淀,形成热液充填交代型矿床。

关键词: 硫铁-钨多金属矿床, H-O-S同位素, 成矿流体演化, 岩浆期后热液充填交代型矿床, 赣南

要点

(1) 对狮吼山硫铁-钨多金属矿床进行H-O-S同位素测试。

(2) 矿床中硫源以岩浆硫为主,成矿流体主要为岩浆水和变质水。

(3) 该矿床的成因类型为岩浆期后热液充填交代型矿床。

Hydrogen-Oxygen-Sulfur Isotope Composition of Shihoushan Pyrite and Tungsten Polymetallic Deposit, Southern Jiangxi

ABSTRACT

BACKGROUND:

Shihoushan Pyrite and Tungsten polymetallic deposit, located in the northern of Yinkeng-Qingtang Au-Ag polymetallic integrated exploration area, is the only large pyrite deposit in southern Jiangxi. The pyrrhotite-pyrite (-chalcopyrite-scheelite) orebody hosts in calciferous sandstone in the Zishan Formation of Carboniferous System, mainly formed in the quartz-sulfide stage.

OBJECTIVES:

In order to better understand the ore-forming material source and the evolution processes of Shihoushan deposit, the primary ores were selected as laboratory raw materials for stable isotope testing.

METHODS:

H-O-S isotope composition of primary ore minerals was analyzed combined with the Pb isotope and metallogenic age results. The ore-forming fluid source and ore-forming evolution process are discussed.

RESULTS:

The δ34S values range from -5.50‰ to -0.20‰, which are mainly concentrated at -3.0‰-0.0‰ (n=11), show the typical signature of mantle S. The wide range of variation indicates that the ore-forming fluid has been subjected to superposition and modification. H-O isotope analyses show that δD=-74.4‰--48.0‰ (n=9), δ18OH2O=3.76‰-10.86‰ (n=9), indicating that the ore-forming fluid is composed mainly of magmatic water and metamorphic water, with minor meteoric water.

CONCLUSIONS:

According to the comprehensive analysis, the ore-forming fluid of this deposit mainly comes from deep magmatic water. The contact between magmatic hydrothermal fluid and calcium-bearing strata forms a large-scale metamorphic fluid, mixed with a small amount of meteoric water. The fluid immiscibility makes the ore-forming materials precipitate in the contact between the rock mass and the calcium-bearing strata, forming a hydrothermal filling and metasomatic deposit.

KEY WORDS: pyrite and tungsten polymetallic deposit, H-O-S isotopes, source of ore-forming fluid, post-magmatic hydrothermal filling and metasomatic deposit, Southern Jiangxi

HIGHLIGHTS

(1) Hydrogen-oxygen-sulfur isotope analysis was carried out in Shihoushan pyrite and tungsten polymetallic deposit.

(2) Magmatic S was the main sulfur source in the Shihoushan deposit and the ore-forming fluid was composed mainly of magmatic water and metamorphic water.

(3) The Shihoushan deposit belongs to the post-magmatic hydrothermal filling and metasomatic deposit.

本文参考文献

[1]

王登红, 陈毓川, 陈郑辉, 等. 南岭地区矿产资源形势分析和找矿方向研究[J]. 地质学报, 2007, 81(7): 882-890. doi: 10.3321/j.issn:0001-5717.2007.07.002

Wang D H, Chen Y C, Chen Z H, et al. Assessment on mineral resource in Nanling Region and suggestion for further prospecting[J].Acta Geologica Sinica, 2007, 81(7): 882-890. doi: 10.3321/j.issn:0001-5717.2007.07.002

[2]

王臻, 赵芝, 邹新勇, 等. 赣南浅变质岩岩石地球化学特征及稀土成矿潜力研究[J]. 岩矿测试, 2018, 37(1): 96-107.

Wang Z, Zhao Z, Zou X Y, et al. Petrogeochemical characteristics and metallogenetic potential of epimetamorphic rock in South Jiangxi Province[J]. Rock and Mineral Analysis, 2018, 37(1): 96-107.

[3]

陈毓川, 陈郑辉, 曾载淋, 等. 南岭科学钻探第一孔选址研究[J]. 中国地质, 2013, 40(3): 659-670. doi: 10.3969/j.issn.1000-3657.2013.03.001

Chen Y C, Chen Z H, Zeng Z L, et al. Research on the site selection of Nanling scientific drilling-1[J].Geology in China, 2013, 40(3): 659-670. doi: 10.3969/j.issn.1000-3657.2013.03.001

[4]

曾载淋.南岭东段银坑地区主要金属矿产成矿规律研究与深部找矿探索[D].北京: 中国地质科学院, 2012.

Zeng Z L.Mineralization Regularity and Deep Prospecting of the Yinkeng Area in the East Nanling Metallognic Belt[D].Beijing: Chinese Academy of Geological Sciences, 2012.

[5]

Feng C Y, Li D X, Zeng Z L, et al. Mineralization styles and genesis of the Yinkeng Au-Ag-Pb-Zn-Cu-Mn polymetallic orefield, Southern Jiangxi Province, SE China:Evidence from geology, fluid inclusions, isotopes and chronology[J].Acta Geologica Sinica, 2014, 88(3): 825-844. doi: 10.1111/acgs.2014.88.issue-3

[6]

李伟, 刘翠辉, 贺根文, 等. 赣南银坑矿田土壤与汞气地球化学特征与成矿预测[J]. 矿物岩石地球化学通报, 2016, 35(6): 1195-1202. doi: 10.3969/j.issn.1007-2802.2016.06.010

Li W, Liu C H, He G W, et al. Geochemical anomalies and metallogenic prediction in the Yinkeng ore field, Southern Jiangxi[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(6): 1195-1202. doi: 10.3969/j.issn.1007-2802.2016.06.010

[7]

赵正, 陈毓川, 曾载淋, 等. 江西银坑W-Ag-Au多金属矿田成矿规律与找矿方向:兼论华南两个成矿系列叠加问题[J]. 地学前缘, 2017, 24(5): 54-61.

Zhao Z, Chen Y C, Zeng Z L, et al. Jiangxi Yinkeng W-Ag-Au ore field's metallogenic regularity and prospecting direction:As well as the superposition of two metallogenic series in Southern China[J]. Earths Science Frontiers, 2017, 24(5): 54-61.

[8]

Zhao Z, Zhou X P, Guo N X, et al. Superimposed W and Ag-Pb-Zn(-Cu-Au) mineralization and deep prospec-ting:Insight from a geophysical investigation of the Yinkeng orefield, South China[J].Ore Geology Reviews, 2018, 93: 404-412. doi: 10.1016/j.oregeorev.2018.01.017

[9]

梁景时, 漆富勇, 范会虎, 等. 江西省宁都县青塘硫铁矿床地质特征及成因探讨[J]. 西部探矿工程, 2014, (6): 169-173. doi: 10.3969/j.issn.1004-5716.2014.06.055

Liang J S, Qi F Y, Fan H H, et al. Geological characteristics and genesis of Qingtang pyrite deposits in Ningdu, Jiangxi[J].West-China Exploration Engineering, 2014, (6): 169-173. doi: 10.3969/j.issn.1004-5716.2014.06.055

[10]

赵正.南岭东段银坑矿田构造-岩浆活动与成矿规律研究[D].北京: 中国地质科学院, 2012: 124-136.

Zhao Z.Tectono-Magmatic Activity and Mineralization Regularity of Yinkeng Ore-field in the East Nanling Metallognic Belt[D].Beijing: Chinese Academy of Geological Sciences, 2012: 124-136.

[11]

Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits[J].Economic Geology, 1972, 67(5): 551-578. doi: 10.2113/gsecongeo.67.5.551

[12]

陕亮, 郑有业, 许荣科, 等. 硫同位素示踪与热液成矿作用研究[J]. 地质与资源, 2009, 18(3): 197-203. doi: 10.3969/j.issn.1671-1947.2009.03.007

Shan L, Zheng Y Y, Xu R K, et al. Review on sulfur isotopic tracing and hydrothermal metalogenesis[J].Geology and Resources, 2009, 18(3): 197-203. doi: 10.3969/j.issn.1671-1947.2009.03.007

[13]

王艳娟, 胡援越, 申俊峰, 等. 太行山南段北洺河铁矿S、Pb同位素组成及其对成矿物质来源的示踪[J]. 现代地质, 2011, 25(5): 846-852. doi: 10.3969/j.issn.1000-8527.2011.05.003

Wang Y J, Hu Y Y, Shen J F, et al. Sulfur and lead isotope composition and tracing for sources of ore-forming materials in Beiming River iron deposits, Sourthern Taihang Mountains[J].Geoscience, 2011, 25(5): 846-852. doi: 10.3969/j.issn.1000-8527.2011.05.003

[14]

张德会, 金旭东, 毛世德, 等. 成矿热液分类兼论岩浆热液的成矿效率[J]. 地学前缘, 2011, 18(5): 90-102.

Zhang D H, Jin X D, Mao S D, et al. The classification of ore-forming fluid and the efficiency of ore formation of magmatic hydrothermal solution[J]. Earth Science Fronties, 2011, 18(5): 90-102.

[15]

郭春影, 张文钊, 葛良胜, 等. 氢氧同位素体系成矿流体示踪若干问题[J]. 矿物岩石, 2011, 31(3): 41-47. doi: 10.3969/j.issn.1001-6872.2011.03.007

Guo C Y, Zhang W Z, Ge L S, et al. Several questions on tracing ore forming fluid by using hydrogen and oxygen isotope system[J].Journal of Mineralogy and Peteology, 2011, 31(3): 41-47. doi: 10.3969/j.issn.1001-6872.2011.03.007

[16]

Zhou J X, Huang Z L, Bao G P, et al. Sources and thermo-chemical sulfate reduction for reduced sulfur in the hydrothermal fluids, southeastern SYG Pb-Zn metallogenic province, SW China[J].Journal of Earth Science, 2013, 24(5): 759-771. doi: 10.1007/s12583-013-0372-8

[17]

Chaussidon M, Lorand J P. Sulphur isotope composition of orogenic spinel lherzolite massifs from Ariege (North-Eastern Pyrenees, France):An ion microprobe study[J].Geochimica et Cosmochimica Acta, 1990, 54(10): 2835-2846. doi: 10.1016/0016-7037(90)90018-G

[18]

陈杰, 段士刚, 张作衡, 等. 新疆西天山式可布台铁矿地质、矿物化学和S同位素特征及其对矿床成因的约束[J]. 中国地质, 2014, 41(6): 1833-1852. doi: 10.3969/j.issn.1000-3657.2014.06.006

Chen J, Duan S G, Zhang Z H, et al. Geology, mineral chemistry and sulfur isotope geochemistry of the Shikebutai iron deposit in West Tianshan Mountains, Xinjiang:Constraints on genesis of the deposit[J].Geology in China, 2014, 41(6): 1833-1852. doi: 10.3969/j.issn.1000-3657.2014.06.006

[19]

燕长海, 刘国印. 豫西南铅锌多金属矿控矿条件及找矿方向[J]. 地质通报, 2004, 23(11): 1143-1148. doi: 10.3969/j.issn.1671-2552.2004.11.016

Yan C H, Liu G Y. Metallogenic characteristics and ore-prospecting suggestions of lead-zinc polymetallic deposits in Southwestern Henan Province of China[J].Geological Bulletin of China, 2004, 23(11): 1143-1148. doi: 10.3969/j.issn.1671-2552.2004.11.016

[20]

李占轲.华北克拉通南缘中生代银-铅-锌矿床成矿作用研究[D].北京: 中国地质大学, 2013: 30-31.

Li Z K.Metallogenesis of the Silver-Lead-Zinc Deposits along the Southern Margin of the North China Craton[D].Beijing: China University of Geoscience, 2013: 30-31.

[21]

徐兆文, 方长泉, 蒋少涌, 等. 安徽青阳峙门口层状硫铁矿矿床地质特征及成因研究[J]. 地质找矿论丛, 2006, 21(1): 10-14. doi: 10.3969/j.issn.1001-1412.2006.01.002

Xu Z W, Fang C Q, Jiang S Y, et al. Study on geological characteristics and genesis of stratified pyritic deposit in Shimenkou, Anhui Province[J].Contributions to Geology and Mineral Resources, 2006, 21(1): 10-14. doi: 10.3969/j.issn.1001-1412.2006.01.002

[22]

路远发. Geokit:一个用VBA构建的地球化学工具软件包[J]. 地球化学, 2004, 33(5): 459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004

Lu Y F. Geokit-A geochemical toolkit for Microsoft excel[J].Geochimica, 2004, 33(5): 459-464. doi: 10.3321/j.issn:0379-1726.2004.05.004

[23]

梁新辉.东秦岭骆驼山多金属硫铁矿地质特征与控矿模式探讨[D].北京: 中国地质大学, 2015: 40-42.

Liang X H.Geological Characteristics of the Luotuoshan Polymetallic Pyrite Deposit and Its Ore-controlling Model in Eastern Qinling, China[D].Beijing: China University of Geoscience, 2015: 40-42.

[24]

邢矿.豫西南栾川群地层特征及其与铅锌矿成矿关系研究[D].北京: 中国地质大学, 2005: 45-52.

Xing K.Study on the Stratigraphic Characters of the Luanchuan Group and the Relation to Pb-Zn Deposit Mineralization in the Southwest of Henan Province[D].Beijing: China University of Geoscience, 2005: 45-52.

[25]

熊先孝, 姚超美. 宁芜向山式硫铁矿地质及矿床成因新探[J]. 化工矿产地质, 2001, 23(2): 93-100. doi: 10.3969/j.issn.1006-5296.2001.02.005

Xiong X X, Yao C M. New thoughts on formation of Xiangshan-type pyrite deposit in Nanjing-Wuhu region[J].Geology of Chemical Minerals, 2001, 23(2): 93-100. doi: 10.3969/j.issn.1006-5296.2001.02.005

相似文献(共18条)

[1]

赵芝, 陈振宇, 陈郑辉, 侯可军, 赵正, 许建祥, 张家菁, 曾载淋. 赣南加里东期阳埠(垇子下)岩体的锆石年龄、构造背景及含矿性评价. 岩矿测试, 2012, 31(3): 530-535.

[2]

郭娜欣, 赵正, 陈振宇, 陈毓川, 侯可军, 王少轶. 赣南鹅婆岩体的年代学和岩石地球化学特征及其地质意义. 岩矿测试, 2014, 33(4): 589-597.

[3]

应立娟, 唐菊兴, 王登红, 畅哲生, 屈文俊, 郑文宝. 西藏甲玛铜多金属矿床矽卡岩中辉钼矿铼-锇同位素定年及其成矿意义. 岩矿测试, 2009, 28(3): 265-268.

[4]

陶继雄, 王弢, 陈郑辉, 罗忠泽, 许立权, 郝先义, 崔来旺. 内蒙古苏尼特左旗乌兰德勒钼铜多金属矿床辉钼矿铼-锇同位素定年及其地质特征. 岩矿测试, 2009, 28(3): 249-253.

[5]

王立强, 唐菊兴, 王焕, 李超, 罗炳学. 西藏哈海岗钨钼多金属矿床地质特征及辉钼矿铼-锇同位素定年. 岩矿测试, 2012, 31(1): 113-119.

[6]

张家菁, 吴木森, 陈郑辉, 刘善宝, 李立兴, 邱良明, 吴斌, 黄安杰, 祝平俊. 江西省上饶县金竹坪钼多金属矿床成矿年代学研究. 岩矿测试, 2009, 28(3): 228-232.

[7]

高允, 孙艳, 赵芝, 李建康, 何晗晗, 杨岳清. 内蒙古武川县赵井沟铌钽多金属矿床白云母40Ar-39Ar同位素年龄及地质意义. 岩矿测试, 2017, 36(5): 551-558. doi: 10.15898/j.cnki.11-2131/td.201612290190

[8]

曾载淋, 张永忠, 朱祥培, 陈郑辉, 王成辉, 屈文俊. 赣南崇义地区茅坪钨锡矿床铼-锇同位素定年及其地质意义. 岩矿测试, 2009, 28(3): 209-214.

[9]

代鸿章, 王登红, 刘丽君, 黄凡, 王成辉. 电子探针和微区X射线衍射研究陕西镇安钨-铍多金属矿床中祖母绿级绿柱石. 岩矿测试, 2018, 37(3): 336-345. doi: 10.15898/j.cnki.11-2131/td.201712140193

[10]

刘琦, 赵爱林, 肖刚, 岳明新. 喷流沉积型多金属矿床中镍钼的赋存特征. 岩矿测试, 2013, 32(1): 70-77.

[11]

周向科, 王建国, 刘荫椿, 李光景, 雷恒永, 毛冰. 哀牢山金矿带冬瓜林金矿床流体包裹体及硫同位素研究. 岩矿测试, 2017, 36(4): 430-439. doi: 10.15898/j.cnki.11-2131/td.201701060002

[12]

王登红, 秦燕, 陈振宇, 侯可军. 赣南部分岩体的锆石铀-铅同位素年代学研究及其对成岩成矿机制的再认识. 岩矿测试, 2012, 31(4): 699-704.

[13]

应立娟, 林彬, 王立强, 李超, 王阔. 应用电感耦合等离子体质谱法研究西藏甲玛超大型铜多金属矿床辉钼矿稀土元素和微量元素地球化学特征. 岩矿测试, 2015, 34(3): 366-374. doi: 10.15898/j.cnki.11-2131/td.2015.03.018

[14]

伍式崇, 龙伟平, 陈郑辉, 屈文俊. 湘东青石岭钨多金属矿地质特征及辉钼矿铼-锇同位素定年. 岩矿测试, 2009, 28(3): 239-243.

[15]

王勇, 唐菊兴, 王立强. 西藏邦铺斑岩钼(铜)矿床钾硅酸盐化热液黑云母电子探针分析及早期成矿流体特征. 岩矿测试, 2016, 35(4): 440-447. doi: 10.15898/j.cnki.11-2131/td.2016.04.017

[16]

范飞鹏, 肖惠良, 陈乐柱, 李海立, 刘建雄, 邓中林, 李少斌, 林梗伟, 周霞. 粤东新寮岽铜多金属矿区钻孔深部矿体铜同位素研究. 岩矿测试, 2017, 36(4): 420-429. doi: 10.15898/j.cnki.11-2131/td.201609010133

[17]

松权衡, 邢树文, 张勇, 李超, 王岩, 于城. 吉林长安堡钼(铜)矿床成矿时代及物质来源:来自辉钼矿Re-Os同位素证据. 岩矿测试, 2016, 35(5): 550-557. doi: 10.15898/j.cnki.11-2131/td.2016.05.014

[18]

徐辉煌, 熊峥嵘, 伍式崇, 陈郑辉, 屈文俊. 湘东龙王排钼多金属矿地质特征及辉钼矿铼-锇同位素定年. 岩矿测试, 2009, 28(3): 244-248.

计量
  • PDF下载量(10)
  • 文章访问量(123)
  • HTML全文浏览量(50)
  • 被引次数(0)
目录

Figures And Tables

赣南狮吼山硫铁-钨多金属矿床H-O-S同位素组成特征

李伟, 于长琦, 曾载淋, 刘翠辉, 贺根文, 陈伟, 邬思涛