【引用本文】 黄文清, 金绪广, 左锐, 等. 天然与合成紫晶的红外和偏振拉曼光谱鉴定特征[J]. 岩矿测试, 2019, 38(4): 403-410. doi: 10.15898/j.cnki.11-2131/td.201807230087
HUANG Wen-qing, JIN Xu-guang, ZUO Rui, et al. Identification Characteristics of Natural and Synthetic Amethyst by Infrared and Polarized Raman Spectroscopy[J]. Rock and Mineral Analysis, 2019, 38(4): 403-410. doi: 10.15898/j.cnki.11-2131/td.201807230087

天然与合成紫晶的红外和偏振拉曼光谱鉴定特征

1. 

国家金银制品质量监督检验中心(南京), 江苏 南京 210028

2. 

安徽省地质实验研究所, 安徽 合肥 230001

3. 

江苏岛村实业发展有限公司, 江苏 南京 210003

收稿日期: 2018-07-23  修回日期: 2019-03-10  接受日期: 2019-04-09

基金项目: 南京市质量技术监督局重点科技资助项目(kj2017006)

作者简介: 黄文清, 硕士, 工程师, 主要从事珠宝玉石的鉴定与研究。E-mail:67019822@qq.com

Identification Characteristics of Natural and Synthetic Amethyst by Infrared and Polarized Raman Spectroscopy

1. 

National Center of Supervision and Inspection on Quality of Gold and Silver Product(Nanjing), Nanjing 210028, China

2. 

Anhui Geological Experiment Institute, Hefei 230001, China

3. 

Jiangsu Daocun Industrial Development Co. LTD, Nanjing 210003, China

Received Date: 2018-07-23
Revised Date: 2019-03-10
Accepted Date: 2019-04-09

摘要:天然紫晶与合成紫晶的鉴别是国内外珠宝鉴定实验室的一个难题,前人主要从双晶、色带、包裹体、红外吸收光谱特征等方面开展了研究。在利用红外光谱鉴别天然紫晶与合成紫晶时,不同的学者尚对3595cm-1或3543cm-1吸收峰作为诊断性还是指示性的判据存在不同认识。本文系统采集了典型的天然紫晶与合成紫晶样品,研究了利用红外光谱测试技术鉴别天然紫晶与合成紫晶的局限性,并尝试将偏振拉曼光谱应用于紫晶成因鉴别。结果表明:利用3595cm-1、3543cm-1红外吸收峰进行紫晶鉴别仅具有指示性意义,不能作为决定性的判定依据,偏振拉曼光谱可作为重要的补充。天然紫晶的偏振拉曼光谱(偏振方向:HH)均出现400cm-1的拉曼峰,而该峰在合成紫晶偏振拉曼光谱中缺失;合成紫晶的偏振拉曼光谱(偏振方向:HH)均具有795cm-1、448cm-1的拉曼峰,而这两个峰在天然紫晶偏振拉曼光谱中缺失。偏振拉曼光谱产生差异的原因可能与天然紫晶和合成紫晶内部晶格变形程度的不同有关。本文揭示的400cm-1、448cm-1和795cm-1偏振拉曼峰可作为鉴别紫晶成因的新依据。

关键词: 天然紫晶, 合成紫晶, 红外光谱, 拉曼光谱, 成因鉴别

要点

(1) 3595cm-1、3543cm-1红外吸收峰对鉴别天然紫晶与合成紫晶仅具有指示性意义。

(2) 对比了天然紫晶与合成紫晶的偏振拉曼光谱特征。

(3) 400cm-1、448cm-1和795cm-1偏振拉曼峰可作为鉴别紫晶成因的新依据。

Identification Characteristics of Natural and Synthetic Amethyst by Infrared and Polarized Raman Spectroscopy

ABSTRACT

BACKGROUND:

The identification of natural and synthetic amethyst is still a challenge for gemological laboratories either at home or abroad. Previous studies focus on twinning, color band, inclusions and the infrared spectrum. Controversy still exists on whether the 3595cm-1 and 3543cm-1 absorptions are indicative or conclusive clues when employing infrared spectroscopy to separate natural amethyst from synthetics.

OBJECTIVES:

To characterize the features of natural and synthetic amethyst.

METHODS:

Typical natural and synthetic amethyst samples were collected. The limitations of infrared spectroscopy to identify natural and synthetic amethyst were studied. The polarized Raman spectroscopy was applied to the identification of amethyst genesis.

RESULTS:

The results showed that there were some limitations in the origin determination of amethyst by using the infrared absorption peaks of 3595cm-1 and 3543cm-1 as criteria. These peaks were indicative, but cannot be used as a decisive basis. The polarized Raman spectrum was complementary to infrared spectroscopy. The polarized Raman spectrum (the direction of both incident laser and Raman signal set as horizon-HH) peak of 400cm-1 were observed in all the natural amethyst, but this peak was absent in the synthetics. The polarized Raman spectrum (direction:HH) peaks of 795cm-1 and 448cm-1 appeared in all the synthetic amethyst, but were not detected in natural amethyst.

CONCLUSIONS:

The difference of polarized Raman spectra may be related to different degree of crystal lattice deformation in natural and synthetic amethyst. The polarized Raman peaks of 400cm-1, 448cm-1 and 795cm-1 can be used as a new criterion for source determination of amethyst.

KEY WORDS: natural amethyst, synthetic amethyst, infrared spectroscopy, Raman spectroscopy, genesis identification

HIGHLIGHTS

(1) The infrared absorption peaks of 3595cm-1 and 3543cm-1 were found to be indicative only for the identification of natural and synthetic amethyst.

(2) The polarization Raman spectra of natural and synthetic amethyst were compared.

(3) The polarization Raman peaks of 400cm-1, 448cm-1 and 795cm-1 can be used as a new basis for source determination of amethyst.

本文参考文献

[1]

Lehmann G, Moore W J. Color center in amethyst quartz[J].Science, 1966, 152(3725): 1061-1062. doi: 10.1126/science.152.3725.1061

[2]

Balitsky V S. Growth of large amethyst crystals from hydrothermal fluoride solutions[J].Journal of Crystal Growth, 1977, 41(1): 100-102. doi: 10.1016/0022-0248(77)90102-6

[3]

Khadzhi V E, Tsyganov E M, Tsinober L I, et al.Process for producing amethyst crystals: US, US4021294[P].1977.

[4]

Crowningshield R, Hurlbut C, Fryer C W, et al. A simple pro-cedure to separate natural from synthetic amethyst on the basis of twinning[J].Gems & Gemology, 1986, 22(3): 130-139.

[5]

Balitsky V S, Lu T, Rossman G R, et al. Russian synthetic ametrine[J]. Gems & Gemology, 1999, 35(2): 122-134.

[6]

Balitsky V S, Balitsky D V, Bondarenko G V, et al. The 3543cm-1 infrared absorption band in natural and synthetic amethyst and its value in identification[J]. Gems & Gemology, 2004, 40(2): 146-161.

[7]

Fritsch E, Stockton C M. Infrared spectroscopy in gem iden-tification[J].Gems & Gemology, 1987, 23(1): 18-26.

[8]

Karampelas S, Fritsch E, Zorba T, et al. Distinguishing natural from synthetic amethyst:The presence and shape of the 3595cm-1 peak[J].Mineralogy & Petrology, 2005, 85(1-2): 45-52.

[9]

Breeding C M.Using LA-ICP-MS analysis for the separation of natural and synthetic amethyst and citrine[EB/OL].News from Research, July 31, 2009. http://www.gia.edu/research-resources/news-from-research.

[10]

Koivula J I, Fritsch E. The growth of Brazil-twinned synthetic quartz and the potential for synthetic amethyst twinned on the Brazil law[J].Gems & Gemology, 1989, 25(3): 159-164.

[11]

Karampelas S, Fritsch E, Zorba T, et al. Infrared spectro-scopy of natural vs.synthetic amethyst:An update[J].Gems & Gemology, 2011, 47(3): 196-201.

[12]

Kitawaki H. Natural amethyst from the Caxarai Mine, Brazil, with a spectrum containing an absorption peak at 3543cm-1[J].Journal of Gemmology, 2002, 28: 101-108. doi: 10.15506/JoG.2002.28.2.101

[13]

Karampelas S, Fritsch E, Zorba T, et al. A refined in-frared-based criterion for successfully separating natural from synthetic amethyst[J].Gems & Gemology, 2006, 42(3): 155.

[14]

Kiefert L, Karampelas S. Use of the Raman spectrometer in gemmological laboratories:Review[J]. Spectrochimica Acta Part A:Molecular & Biomolecular Spectroscopy, 2011, 80(1): 119-124.

[15]

Häanni H A, Kiefert L, Chalain J P, et al. A Raman mi-croscope in the gemmological laboratory:First experiences of application[J].Journal of Gemmology, 1997, 25(6): 394-406. doi: 10.15506/JoG.1997.25.6.394

[16]

陈学军, 王以群, 毛荐, 等. 天然与合成紫晶的光谱学特征及其呈色机理[J]. 华东理工大学学报, 2011, 37(3): 320-324. doi: 10.3969/j.issn.1006-3080.2011.03.012

Chen X J, Wang Y Q, Mao J, et al. Spectral characteristics and coloration mechanism of natural and synthetic amethyst[J].Journal of East China University of Science and Technology, 2011, 37(3): 320-324. doi: 10.3969/j.issn.1006-3080.2011.03.012

[17]

曹盼, 虞澜, 祖恩东, 等. 天然水晶和水热法合成水晶的拉曼光谱分析[J]. 光散射学报, 2017, 29(1): 50-53.

Cao P, Yu L, Zu E D, et al. Study on Raman spectrum of natural crystal and synthetic crystal by hydrothemal method[J]. The Journal of Light Scattering, 2017, 29(1): 50-53.

[18]

周丹怡, 陈华, 陆太进, 等. 基于拉曼光谱-红外光谱-X射线衍射技术研究斜硅石的相对含量与石英质玉石结晶度的关系[J]. 岩矿测试, 2015, 34(6): 652-658.

Zhou D Y, Chen H, Lu T J, et al. Study on the relationship between the relative content of moganite and the crystallinity of quarzite jade by Raman scattering spectroscopy, infared absorption spectroscopy and X-ray diffraction techniques[J]. Rock and Mineral Analysis, 2015, 34(6): 652-658.

[19]

刘亚非, 王立社, 魏小燕, 等. 应用电子微探针-扫描电镜-拉曼光谱-电子背散射衍射研究一种未知Ti-Zr-U氧化物的矿物学特征[J]. 岩矿测试, 2016, 35(1): 48-55.

Liu Y F, Wang L S, Wei X Y, et al. Study on the mineralogical properties of an unknown Ti-Zr-U oxide using EPMA, SEM, Raman spectroscopy and EBSD techniques[J]. Rock and Mineral Analysis, 2016, 35(1): 48-55.

[20]

胡哲, 郭颖. 粉色水晶内针状包裹体的成分与分布特征研究[J]. 岩矿测试, 2018, 37(3): 306-312.

Hu Z, Guo Y. Study on the component and distribution characteristics of needle like inclusions in rose quarz[J]. Rock and Mineral Analysis, 2018, 37(3): 306-312.

[21]

Liu X L, Zhang X, Lin M L, et al. Different angle-resolved polarization configurations of Raman spectroscopy:A case on the basal and edge plane of two-dimensional materials[J].Chinese Physics B, 2017, 26(6): 067802. doi: 10.1088/1674-1056/26/6/067802

[22]

Bates J B, Quist A S. Polarized Raman spectra of β-quartz[J].The Journal of Chemical Physics, 1972, 56(4): 1528-1533. doi: 10.1063/1.1677402

[23]

Zhang X, Han W P, Wu J B, et al. Raman spectroscopy of shear and layer breathing modes in multilayer MoS2[J].Physical Review B, 2013, 87(11): 115413. doi: 10.1103/PhysRevB.87.115413

[24]

Islam M M, Datchi F. Polarized Raman Spectra of α-quartz[J].International Letters of Chemistry, Physics and Astronomy, 2015, 56: 91-98. doi: 10.18052/www.scipress.com/ILCPA.56.91

[25]

Aines R D, Rossman G R. Water in minerals? A peak in the infrared[J].Journal of Geophysical Research:Solid Earth, 1984, 89(B6): 4059-4071. doi: 10.1029/JB089iB06p04059

[26]

Bell D R, Rossman G R. Water in Earth's mantle:The role of nominally anhydrous minerals[J].Science, 1992, 255(5050): 1391-1397. doi: 10.1126/science.255.5050.1391

[27]

Rossman G R. Studies of OH in nominally anhydrous mi-nerals[J].Physics and Chemistry of Minerals, 1996, 23(4-5): 299-304.

[28]

Thomas S M, Koch-Müller M, Reichart P, et al. IR calibrations for water determination in olivine, γ-GeO2, and SiO2 polymorphs[J].Physics and Chemistry of Minerals, 2009, 36(9): 489-509. doi: 10.1007/s00269-009-0295-1

[29]

Müller A, Kochmüller M. Hydrogen speciation and trace element contents of igneous, hydrothermal and metamorphic quartz from Norway[J].Mineralogical Magazine, 2009, 73(4): 569-583. doi: 10.1180/minmag.2009.073.4.569

[30]

Scott J F, Porto S P S. Longitudinal and transverse op-tical lattice vibrations in quartz[J].Physical Review, 1967, 161(3): 903-910. doi: 10.1103/PhysRev.161.903

[31]

Bailey S W, Bell R A, Peng C J, et al. Plastic deformation of quartz in nature[J].Geological Society of America Bulletin, 1958, 69(11): 1443-1466. doi: 10.1130/0016-7606(1958)69[1443:PDOQIN]2.0.CO;2

[32]

Blacic J D, Christie J M. Plasticity and hydrolytic wea-kening of quartz single crystals[J].Journal of Geophysical Research:Solid Earth, 1984, 89(B6): 4223-4239. doi: 10.1029/JB089iB06p04223

[33]

Morrison-Smith D J, Paterson M S, Hobbs B E, et al. An electron microscope study of plastic deformation in single crystals of synthetic quartz[J].Tectonophysics, 1976, 33(1-2): 43-79. doi: 10.1016/0040-1951(76)90051-2

相似文献(共19条)

[1]

李平, 马伟幸, 王蓓. 昌化芝麻地鸡血石物相鉴定. 岩矿测试, 2008, 27(1): 67-68.

[2]

, 郑海飞, 陈晋阳. 高温下合成包裹体中流体水分子氢键的拉曼光谱分析. 岩矿测试, 2002, (3): 166-170.

[3]

宋中华, 陆太进, 苏隽, 柯捷, 唐诗, 李键, 高博, 张钧. 利用吸收和发光光谱技术分析高温高压天然富氢钻石的鉴定特征. 岩矿测试, 2018, 37(1): 64-69. doi: 10.15898/j.cnki.11-2131/td.201705040072

[4]

张毅刚. 拉曼光谱在分析气液包裹体气体成分中的应用. 岩矿测试, 1992, (4): 350-353.

[5]

李淑玲. 二氧化碳—水体系的拉曼光谱研究. 岩矿测试, 1998, (3): 177-180.

[6]

赵俊哲, 吕新彪. 高压下白云石的原位拉曼光谱研究. 岩矿测试, 2008, 27(5): 337-340.

[7]

李天顺, 李莉萍. 红外光谱定量测定硅灰石矿中矿物含量. 岩矿测试, 1992, (3): 232-235.

[8]

佟柏龄, 徐维并. 反射红外光谱法研究改性超滤膜. 岩矿测试, 1999, (2): 113-116.

[9]

乔鑫, 周征宇, 农佩臻, 赖萌, 李英搏, 郭恺鹏, 钟倩, 王含, 周彦. 贫碱结构水类型祖母绿红外光谱特征及其控制因素探究. 岩矿测试, 2019, 38(2): 169-178. doi: 10.15898/j.cnki.11-2131/td.201804070039

[10]

张聪, 夏响华, 杨玉茹, 白名岗, 代峰, 熊杰. 安页1井志留系龙马溪组页岩有机质拉曼光谱特征及其地质意义. 岩矿测试, 2019, 38(1): 26-34. doi: 10.15898/j.cnki.11-2131/td.201803220025

[11]

张水昌, 张蒂嘉, 张大江, 崔京钢, 张鼐. 氯盐溶液的拉曼光谱特征及测试探讨. 岩矿测试, 2005, (1): 40-42.

[12]

刘亚非, 王立社, 魏小燕, 周宁超, 来志庆, 杨文强, 李智明, 赵慧博. 应用电子微探针-扫描电镜-拉曼光谱-电子背散射衍射研究一种未知Ti-Zr-U氧化物的矿物学特征. 岩矿测试, 2016, 35(1): 48-55. doi: 10.15898/j.cnki.11-2131/td.2016.01.009

[13]

宋中华, 陆太进, 苏隽, 高博, 唐诗, 胡宁, 柯捷, 张钧. 无色-近无色高温高压合成钻石的谱图特征及其鉴别方法. 岩矿测试, 2016, 35(5): 496-504. doi: 10.15898/j.cnki.11-2131/td.2016.05.008

[14]

葛昌华, 梁华定, 潘富友. 2—(四氮唑偶氮)—5—二乙氨基苯甲酸的合成及光度法测定钒. 岩矿测试, 2003, (1): 40-43.

[15]

邵红, 刘相龙, 王大卫, 徐微雪. 壳聚糖和PDMDAAC改性膨润土用于处理含油废水的研究. 岩矿测试, 2014, 33(3): 431-437.

[16]

田隆. 五颜六色的黄龙玉及致色机理. 岩矿测试, 2012, 31(2): 306-311.

[17]

邢莹莹, 亓利剑, 王海涛. 秘鲁蓝色蛋白石矿物学性质及致色机理初探. 岩矿测试, 2017, 36(6): 608-613. doi: 10.15898/j.cnki.11-2131/td.201707250121

[18]

武素茹, 宋义, 谷松海, 郭芬, 孙鑫. X射线荧光光谱-X射线衍射-红外光谱联用技术鉴别锰矿与锰冶炼渣. 岩矿测试, 2015, 34(6): 659-664. doi: 10.15898/j.cnki.11-2131/td.2015.06.009

[19]

夏宁, 刘昌岭, 业渝光, 孟庆国, 林学辉, 贺行良. 显微激光拉曼光谱测定天然气水合物的方法研究. 岩矿测试, 2011, 30(4): 416-422.

计量
  • PDF下载量(18)
  • 文章访问量(170)
  • HTML全文浏览量(13)
  • 被引次数(0)
目录

Figures And Tables

天然与合成紫晶的红外和偏振拉曼光谱鉴定特征

黄文清, 金绪广, 左锐, 晁东娟, 杨桂群, 薛盼, 陈小军, 张锦雯