【引用本文】 刘贵磊, 许春雪, 陈宗定, 等. 氟化氢铵快速分解-电感耦合等离子体质谱法测定含刚玉铝土矿中锂镓锆稀土等痕量元素[J]. 岩矿测试, 2020, 39(5): 670-681. doi: 10.15898/j.cnki.11-2131/td.202003120031
LIU Gui-lei, XU Chun-xue, CHEN Zong-ding, et al. Determination of Lithium, Gallium, Zirconium, Rare Earth Elements and Other Trace Elements in Corundum-bearing Bauxite by Inductively Coupled Plasma-Mass Spectrometry with Rapid Decomposition of Ammonium Bifluoride[J]. Rock and Mineral Analysis, 2020, 39(5): 670-681. doi: 10.15898/j.cnki.11-2131/td.202003120031

氟化氢铵快速分解-电感耦合等离子体质谱法测定含刚玉铝土矿中锂镓锆稀土等痕量元素

国家地质实验测试中心, 北京 100037

收稿日期: 2020-03-12  修回日期: 2020-04-08  接受日期: 2020-05-13

基金项目: 中国地质调查局地质调查项目(DD20190323,DD20190475);国家自然科学基金项目(21601041)

作者简介: 刘贵磊, 博士, 助理研究员, 主要从事岩矿测试分析和标准化工作。E-mail:liuguilei2008@163.com

Determination of Lithium, Gallium, Zirconium, Rare Earth Elements and Other Trace Elements in Corundum-bearing Bauxite by Inductively Coupled Plasma-Mass Spectrometry with Rapid Decomposition of Ammonium Bifluoride

National Research Center for Geoanalysis, Beijing 100037, China

Received Date: 2020-03-12
Revised Date: 2020-04-08
Accepted Date: 2020-05-13

摘要:铝土矿中常伴有锂、镓、锆、稀土等有用组分,完全提取并准确测定其含量对于铝土矿资源综合评价和综合利用具有重要意义。然而铝土矿中常常含有少量刚玉,常规的四酸、五酸和封闭压力酸溶法对其分解不完全,导致测定结果偏低。本文采用氟化氢铵作熔剂,高温下在旋盖PFA小瓶中分解样品,通过在熔样过程中使用少量硫酸,对不同熔矿温度、消解时间及试剂用量等因素详细考察,确定了最佳熔矿条件[200℃,3h,试样比4:1(称样量50mg)],建立了氟化氢铵分解-电感耦合等离子体质谱法测定含刚玉铝土矿中37种痕量元素的分析方法。本方法能快速、有效地分解含刚玉铝土矿,经三种铝土矿国家标准物质GBW07177、GBW07181和GBW07182验证,并与四酸、五酸和封闭压力酸溶法的测定结果对比,三种标准物质中Li、Ga、Sr、Zr、Pb等9种元素的回收率分别在95.0%~115.0%、90.0%~110.0%和90.0%~110.0%之间,测定值与认定值相符。同时,本方法实现了铝土矿(Al2O3含量在42.97%~90.36%之间)中Al、Ti、P等主量元素的精确分析,进一步验证了其用来测定铝土矿中痕量元素的准确性。方法检出限为0.002~0.43μg/g,与传统硝酸-氢氟酸密闭消解法的检出限(0.000~0.48μg/g)基本相当,精密度在1.14%~8.84%之间,能够满足铝土矿中痕量元素的分析要求。

关键词: 氟化氢铵, 快速分解, 电感耦合等离子体质谱法, 含刚玉铝土矿, 痕量元素

要点

(1) 以氟化氢铵为熔剂,解决了四酸、五酸和封闭压力酸溶法对含刚玉铝土矿分解不完全的问题。

(2) 确定了氟化氢铵分解含刚玉铝土矿的最佳温度、时间和试样比。

(3) 本研究适用于铝土矿特别是高铝及含刚玉铝土矿的痕量元素分析。

Determination of Lithium, Gallium, Zirconium, Rare Earth Elements and Other Trace Elements in Corundum-bearing Bauxite by Inductively Coupled Plasma-Mass Spectrometry with Rapid Decomposition of Ammonium Bifluoride

ABSTRACT

BACKGROUND:

Bauxite is often accompanied by useful components such as lithium, gallium, zirconium, and rare earth metals. Complete extraction and accurate determination of the content of these components are of great significance for the comprehensive evaluation and comprehensive utilization of bauxite resources. However, bauxite often contains a small amount of corundum, which is not completely decomposed by the conventional four-acid, five-acid and closure pressure acid dissolution methods, resulting in lower measurement results.

OBJECTIVES:

To explore the new decomposition method to achieve rapid and accurate analysis of trace elements in corundum- bearing bauxite.

METHODS:

A digestion technique using the solid compound ammonium bifluoride in a screw-capped PFA vial at high temperature has been developed for trace elements analysis of corundum-bearing bauxite by using a small amount of sulfuric acid during the fusion process. The factors such as different melting temperature, digestion time and reagent dosage were investigated in detail, the optimal smelting conditions (200℃, 3h, sample ratio 4:1) were confirmed. An analytical method for determination of 37 trace elements in corundum-bearing bauxite by inductively coupled plasma-mass spectrometry with rapid decomposition of ammonium bifluoride was established.

RESULTS:

This method can be used to quickly and effectively decompose corundum-bearing bauxite, which has been verified by three national bauxite standard materials GBW07177, GBW07181 and GBW07182. The proposed method was also compared with the results of the four-acid, five-acid and closure pressure acid dissolution methods. The recoveries of nine elements such as Li, Ga, Sr, Zr and Pb in the three standard materials were from 95.0% to 115.0%, 90.0% to 110.0%, and 90.0% to 110.0%, respectively. The analytical result was in agreement with the certified values. The detection limits of the method were from 0.002 to 0.43μg/g, which was closely equivalent to the detection limits (0.000-0.48μg/g) of the traditional nitric acid-hydrofluoric acid closure digestion method. The precisions were from 1.14% to 8.84%, which qualified it to meet the analytical requirements of trace elements in bauxite.

CONCLUSIONS:

This method can be used to achieve accurate analysis of major elements such as Al, Ti, and P in bauxite (Al2O3 content between 42.97% and 90.36%), which further verifies the accuracy of this method for the determination of trace elements in bauxite.

KEY WORDS: ammonium bifluoride, rapid decomposition, inductively coupled plasma-mass spectrometry, corundum-bearing bauxite, trace elements

HIGHLIGHTS

(1) NH4HF2 was used as a flux, which solved the problem of incomplete decomposition of corundum-containing bauxite by four-acid, five-acid and closure pressure acid dissolution methods.

(2) The optimum temperature, time and reagent dosage of NH4HF2 to decompose corundum-bearing bauxite were determined.

(3) The study was applicable to trace element analysis of bauxite, especially high-alumina and corundum-bearing bauxite.

本文参考文献

[1]

龙克树, 付勇, 龙珍, 等. 全球铝土矿中稀土和钪的资源潜力分析[J]. 地质学报, 2019, 93(6): 1279-1295.

Long K S, Fu Y, Long Z, et al. Resource potential analysis of REE and Sc in global bauxite[J]. Acta Geologica Sinica, 2019, 93(6): 1279-1295.

[2]

卢业友, 杨芬. 电感耦合等离子体原子发射光谱法测定铝土矿中锂和镓[J]. 冶金分析, 2017, 37(3): 70-73.

Lu Y Y, Yang F. Determination of lithium and gallium in bauxite by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2017, 37(3): 70-73.

[3]

钟海仁, 孙艳, 杨岳清, 等. 铝土矿(岩)型锂资源及其开发利用潜力[J]. 矿床地质, 2019, 38(4): 898-916.

Zhong H R, Sun Y, Yang Y Q, et al. Bauxite (aluminum)-type lithium resources and analysis of its development and utilization potential[J]. Mineral Deposits, 2019, 38(4): 898-916.

[4]

严爽, 黄康俊, 付勇, 等. 铝土矿中锂同位素分离提纯方法的建立[J]. 岩矿测试, 2020, 39(1): 41-52.

Yan S, Huang K J, Fu Y, et al. The establishment of methods for separating and purifying lithium isotopes in bauxite[J]. Rock and Mineral Analysis, 2020, 39(1): 41-52.

[5]

金中国, 周家喜, 黄智龙, 等. 黔北务-正-道地区典型铝土矿床伴生有益元素锂、镓和钪分布规律[J]. 中国地质, 2015, 42(6): 1910-1918.

Jin Z G, Zhou J X, Huang Z L, et al. The distribution of associated elements Li, Sc and Ga in the typical bauxite deposits over the Wuchuan-Zheng'an-Daozhen bauxite ore district, northern Guizhou Province[J]. Geology in China, 2015, 42(6): 1910-1918.

[6]

Lu F H, Xiao T F, Lin J, et al. Resources and extraction of Gallium:A review[J].Hydrometallurgy, 2017, 174: 105-115. doi: 10.1016/j.hydromet.2017.10.010

[7]

王登红, 王瑞江, 李建康, 等. 中国三稀矿产资源战略调查研究进展综述[J]. 中国地质, 2013, 40(2): 361-370.

Wang D H, Wang R J, Li J K, et al. The progress in the strategic research survey of rare earth, rare metal and rare-scattered elements mineral resources[J]. Geology in China, 2013, 40(2): 361-370.

[8]

Putzolu F, Papa A P, Mondillo N, et al. Geochemical characterization of bauxite deposits from the Abruzzi mining district (Italy)[J].Minerals, 2018, 8(7): 298. doi: 10.3390/min8070298

[9]

Khosravi M, Abedini A, Alipour S, et al. The Darzi-Vali bauxite deposit, West-Azarbaidjan Province, Iran:Critical metals distribution and parental affinities[J].Journal of African Earth Sciences, 2017, 129: 960-972. doi: 10.1016/j.jafrearsci.2017.02.024

[10]

Torró L, Proenza J A, Aiglsperger T, et al. Geological, geochemical and mineralogical characteristics of REE-bearing Las Mercedes bauxite deposit, Dominican Republic[J].Ore Geology Reviews, 2017, 89: 114-131. doi: 10.1016/j.oregeorev.2017.06.017

[11]

《岩石矿物分析》编委会. 岩石矿物分析[M] (第四版第三分册) . 北京: 地质出版社, 2011: 255-256.

The editorial committee of Rock and Mineral Analysis . Rock and mineral analysis[M] (The fourth editionVolume Ⅲ) . Beijing: Geological Publishing House, 2011: 255-256.
[12]

胡宝珍. 罗丹明B萃取光度法测定铝土矿中镓的质量保证[J]. 冶金分析, 2005, 25(2): 95-96.

Hu B Z. Quality assurance of determination of gallium in bauxite by Rhodamine B extraction photometry[J]. Metallurgical Analysis, 2005, 25(2): 95-96.

[13]

朱鲜红, 李德生, 张晶华, 等. 乙酸丁酯萃取火焰原子吸收光谱法测定铝土矿中微量镓[J]. 冶金分析, 2004, 24(6): 63-65.

Zhu X H, Li D S, Zhang J H, et al. Determination of micro gallium in bauxite by butyl acetate extraction and flame atomic absorption spectrometry[J]. Metallurgical Analysis, 2004, 24(6): 63-65.

[14]

Calagari A A, Abedini A. Geochemical investigations on Permo-Triassic bauxite horizon at Kanisheeteh, east of Bukan, west Azarbaidjan, Iran[J].Journal of Geochemical Exploration, 2007, 94: 1-18. doi: 10.1016/j.gexplo.2007.04.003

[15]

Peh Z, Galović E K. Geochemistry of Istrian Lower Palae-ogene bauxites-Is it relevant to the extent of subaerial exposure during Cretaceous times?[J].Ore Geology Reviews, 2014, 63: 296-306. doi: 10.1016/j.oregeorev.2014.05.020

[16]

Cotta A J B, Enzweiler J. Classical and new procedures of whole rock dissolution for trace element determination by ICP-MS[J]. Geostandards and Geoanalytical Research, 2011, 36(1): 27-50.

[17]

Zhang W, Hu Z C, Liu Y S, et al. Reassessment of HF/HNO3 decomposition capability in the high-pressure digestion of felsic rocks for multi-element determination by ICP-MS[J].Geostandards and Geoanalytical Research, 2012, 36(3): 271-278. doi: 10.1111/j.1751-908X.2012.0156.x

[18]

王琰, 孙洛新, 张帆, 等. 电感耦合等离子体发射光谱法测定含刚玉的铝土矿中硅铝铁钛[J]. 岩矿测试, 2013, 32(5): 719-723.

Wang Y, Sun L X, Zhang F, et al. Determination of Si, Al, Fe and Ti in bauxite by inductively coupled plasma-atomic emission spectrometry[J]. Rock and Mineral Analysis, 2013, 32(5): 719-723.

[19]

孙红宾, 刘贵磊, 赵怀颖, 等. 偏硼酸锂熔融-ICP-AES法测定含刚玉铝土矿中主成分[J]. 分析试验室, 2017, 36(12): 1429-1434.

Sun H B, Liu G L, Zhao H Y, et al. Determination of main components in corundum-bearing bauxite by ICP-AES with lithium metaborate fusion method[J]. Chinese Journal of Analysis Laboratory, 2017, 36(12): 1429-1434.

[20]

杨小丽, 李小丹, 邹棣华, 等. 溶样方法对电感耦合等离子体质谱法测定铝土矿中稀土元素的影响[J]. 冶金分析, 2016, 36(7): 56-62.

Yang X L, Li X D, Zou D H, et al. Influence of sample dissolution method on determination of rare earth elements in bauxite by inductively coupled plasma mass spectrometry[J]. Metellurgical Analysis, 2016, 36(7): 56-62.

[21]

da Costa M L, da Silva Cruz G, de Almeida H D F, et al. On the geology, mineralogy and geochemistry of the bauxite-bearing regolith in the Lower Amazon Basin:Evidence of genetic relationship[J].Journal of Geochemical Exploration, 2014, 146: 58-74. doi: 10.1016/j.gexplo.2014.07.021

[22]

Monsels D A, van Bergen M J. Bauxite formation on Proterozoic bedrock of Suriname[J].Journal of Geochemical Exploration, 2017, 180: 71-90. doi: 10.1016/j.gexplo.2017.06.011

[23]

Mongelli G, Boni M, Buccione R, et al. Geochemistry of the Apulian karst bauxites (southern Italy):Chemical fractionation and parental affinities[J].Ore Geology Reviews, 2014, 63: 9-21. doi: 10.1016/j.oregeorev.2014.04.012

[24]

Ahmadnejad F, Zamanian H, Taghipour B, et al. Mineralogical and geochemical evolution of the Bidgol bauxite deposit, Zagros Mountain Belt, Iran:Implications for ore genesis, rare earth elements fractionation and parental affinity[J].Ore Geology Reviews, 2017, 86: 755-783. doi: 10.1016/j.oregeorev.2017.04.006

[25]

杨载明. 电感耦合等离子体发射光谱法测定铝土矿样品中镓三种前处理方法的比较[J]. 岩矿测试, 2011, 30(3): 315-317.

Yang Z M. The comparison of three sample pretreatment methods in determination of gallium in bauxite ores by inductively coupled plasma-atomic emission spectro-metry[J]. Rock and Mineral Analysis, 2011, 30(3): 315-317.

[26]

高志军, 陈静, 陈浩凤, 等. 熔融制样-X射线荧光光谱法测定硅酸盐和铝土矿中主次组分[J]. 冶金分析, 2015, 35(7): 73-78.

Gao Z J, Chen J, Chen H F, et al. Simultaneous determination of major and minor components in silicate and bauxite by X-ray fluorescence[J]. Metellurgical Analysis, 2015, 35(7): 73-78.

[27]

胡璇, 石磊, 张炜华, 等. 碱熔融-电感耦合等离子体发射光谱法测定高硫铝土矿中的硫[J]. 岩矿测试, 2017, 36(2): 124-129.

Hu X, Shi L, Zhang W H, et al. Determination of sulfur in high-sulfur bauxite by alkali fusion-inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(2): 124-129.

[28]

Awaji S, Nakamura K, Nozaki T, et al. A simple method for precise determination of 23 trace elements in granitic rocks by ICP-MS after lithium tetraborate fusion[J].Resource Geology, 2006, 56(4): 471-478. doi: 10.1111/j.1751-3928.2006.tb00299.x

[29]

Zhang W, Hu Z C, Liu Y S, et al. Quantitative analysis of major and trace elements in NH4HF2-modified silicate rock powders by laser ablation-inductively coupled plasma mass spectrometry[J]. Analytica Chimica Acta, 2017, 983(29): 149-159.

[30]

Zhang W, Hu Z C. Recent advances in sample prepa-ration methods for elemental and isotopic analysis of geological samples[J].Spectrochimica Acta Part B, 2019, 160: 105690. doi: 10.1016/j.sab.2019.105690

[31]

Magaldi T T, Navarro M S, Enzweiler J, et al. Assessment of dissolution of silicate rock reference materials with ammonium bifluoride and nitric acid in a microwave oven[J].Geostandards and Geoanalytical Research, 2019, 43(1): 189-208. doi: 10.1111/ggr.12242

[32]

Ayranci B. A rapid decomposition method for analyzing zirconia[J]. Mineral Research and Exploration Bulletin, 1989, 109: 75-79.

[33]

Mariet C, Belhadj O, Leroy S, et al. Relevance of NH4F in acid digestion before ICP-MS analysis[J]. Talanta, 2008, 77(2): 445-450.

[34]

Hu Z C, Gao S, Liu Y S, et al. NH4F assisted high pressure digestion of geological samples for multi-element analysis by ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2010, 25(3): 408-413. doi: 10.1039/b921006g

[35]

Zhang W, Hu Z C, Liu Y S, et al. Total rock dissolution using ammonium bifluoride (NH4HF2) in screw-top teflon vials:A new development in open-vessel digestion[J]. Analytical Chemistry, 2012, 84(23): 10686-10693.

[36]

Hu Z C, Zhang W, Liu Y S, et al. Rapid bulk rock decomposition by ammonium fluoride (NH4F) in open vessels at an elevated digestion temperature[J].Chemical Geology, 2013, 355: 144-152. doi: 10.1016/j.chemgeo.2013.06.024

[37]

Zhang W, Qi L, Hu Z C, et al. An investigation of diges-tion methods for trace elements in bauxite and their determination in ten bauxite reference materials using inductively coupled plasma-mass spectrometry[J].Geostandards and Geoanalytical Research, 2016, 40(2): 195-216. doi: 10.1111/j.1751-908X.2015.00356.x

[38]

Yokoyama T, Makishima A, Nakamura E, et al. Evaluation of the coprecipitation of incompatible trace elements with fluoride during silicate rock dissolution by acid digestion[J].Chemical Geology, 1999, 157: 175-187. doi: 10.1016/S0009-2541(98)00206-X

[39]

Hu Z C, Gao S. Upper crustal abundances of trace elements:A revision and update[J].Chemical Geology, 2008, 253(3-4): 205-221. doi: 10.1016/j.chemgeo.2008.05.010

相似文献(共20条)

[1]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[2]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[3]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[4]

奥地利安东帕有限公司. HPA-S高压湿法消解仪消解油类样品——标准方法ASTM C 1234-98(2004). 岩矿测试, 2008, 27(3): 文后I-文后I.

[5]

门倩妮, 刘玲, 温良, 黄北川, 周远洋, 许东东. 电感耦合等离子体质谱法测定碳酸盐岩中30种痕量元素及干扰校正研究. 岩矿测试, 2015, 34(4): 420-423. doi: 10.15898/j.cnki.11-2131/td.2015.04.007

[6]

侍金敏, 冯廷建, 付鹏飞, 汤勇武, 陈大林, 张春翔, 燕娜. 微波消解-电感耦合等离子体质谱法同时测定金属硫化矿中的稀散元素. 岩矿测试, 2019, 38(6): 631-639. doi: 10.15898/j.cnki.11-2131/td.201805300066

[7]

宫明岗, 朱金荣. 电感耦合等离子体发射光谱法测定锂辉矿中的主次痕量元素. 岩矿测试, 1995, (3): 180-184.

[8]

郭振华, 何汉江, 田凤英. 混合酸分解-电感耦合等离子体质谱法测定磷矿石中15种稀土元素. 岩矿测试, 2014, 33(1): 25-28.

[9]

董学林, 何海洋, 储溱, 仇秀梅, 唐兴敏. 碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素. 岩矿测试, 2019, 38(6): 620-630. doi: 10.15898/j.cnki.11-2131/td.201901090004

[10]

何红蓼, 殷宁万. 等离子体质谱法测定天然水中痕量元素. 岩矿测试, 1991, (3): 171-176.

[11]

曾惠芳, 戢朝玉. 资料@—感耦等离子体质谱法同时测定岩石中痕量元素的研究. 岩矿测试, 1995, (3): 173-179.

[12]

袁继海, 詹秀春, 樊兴涛, 胡明月. 硫化物矿物中痕量元素的激光剥蚀-电感耦合等离子体质谱微区分析进展. 岩矿测试, 2011, 30(2): 121-130.

[13]

李献华, 刘颖. 等离子体质谱测定岩石标准物质中痕量元素—对某些元素定值的探讨. 岩矿测试, 1998, (2): 112-116.

[14]

温宏利, 夏月莲. 辉碲铋矿单矿物的主次痕量元素分析. 岩矿测试, 1995, (4): 245-249.

[15]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[16]

王娜, 徐铁民, 魏双, 王家松, 曾江萍, 张楠. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素. 岩矿测试, 2020, 39(1): 68-76. doi: 10.15898/j.cnki.11-2131/td.201904010043

[17]

曾惠芳, 阙松娇. 有机螯合沉淀剂富集—感耦等离子体质谱法测定地球化学样品中痕量元素. 岩矿测试, 1995, (1): 26-30.

[18]

王瑞敏. 泡沫塑料富集-电感耦合等离子体质谱法测定土壤中超痕量金铂钯. 岩矿测试, 2011, 30(3): 295-298.

[19]

张永盛. 感耦等离子体发射光谱法测定锆英石中主次痕量元素. 岩矿测试, 1994, (2): 121-124.

[20]

吕彩芬, 马新荣, 温宏利, 史世云, 李冰, 何红蓼. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究Ⅰ.不同介质及不同阴离子形态对测定信号的影响. 岩矿测试, 2001, (3): 161-166.

计量
  • PDF下载量(31)
  • 文章访问量(595)
  • HTML全文浏览量(174)
  • 被引次数(0)
目录

Figures And Tables

氟化氢铵快速分解-电感耦合等离子体质谱法测定含刚玉铝土矿中锂镓锆稀土等痕量元素

刘贵磊, 许春雪, 陈宗定, 温宏利