【引用本文】 曾美云, 陈燕波, 刘金, 等. 高磷铁矿石成分分析标准物质研制[J]. 岩矿测试, 2019, 38(2): 212-221. doi: 10.15898/j.cnki.11-2131/td.201808150094
ZENG Mei-yun, CHEN Yan-bo, LIU Jin, et al. Preparation of High-phosphorus Iron Ore Reference Materials for Chemical Composition Analysis[J]. Rock and Mineral Analysis, 2019, 38(2): 212-221. doi: 10.15898/j.cnki.11-2131/td.201808150094

高磷铁矿石成分分析标准物质研制

中国地质调查局武汉地质调查中心, 湖北 武汉 430205

收稿日期: 2018-08-15  修回日期: 2018-12-22  接受日期: 2019-01-04

基金项目: 自然资源部公益性行业专项(201311096)

作者简介: 曾美云, 高级工程师, 主要从事岩矿测试及标准化研究。E-mail:ld_2002@sina.com

Preparation of High-phosphorus Iron Ore Reference Materials for Chemical Composition Analysis

Wuhan Center of Geological Survey, China Geological Survey, Wuhan 430205, China

Received Date: 2018-08-15
Revised Date: 2018-12-22
Accepted Date: 2019-01-04

摘要:高磷铁矿石的分析测试过程需要基体组分相似、含量适中、定值组分全的标准物质进行质量监控,目前我国没有高磷铁矿石标准物质,现有铁矿石标准物质因基体组分不尽相同,磷元素含量大部分低于0.25%,而高磷铁矿石中磷含量均高于0.25%,这些标准物质难以满足高磷铁矿石产品的分析测试质量监控要求。基于此,本文研制了3个高磷铁矿石成分分析标准物质,样品分别采集于鄂西地区湖北宜昌秭归县野狼坪矿区、湖北恩施长岭矿区(武钢矿区)、湖北宜昌长阳县火烧坪矿区(宝钢长阳矿区),磷和铁含量均呈一定梯度,基本覆盖高磷铁矿的含量范围。均匀性和稳定性对SiO2、Al2O3、TiO2、P、K2O、Na2O、Fe、MnO、CaO、MgO、FeO、LOI、S、Cu、Pb、Zn、Cr、Ni、Co、Cd、Sr、Ba、V、As、Hg共25个组分进行检验,均匀性检验采用方差分析F检验法和测试结果的相对标准偏差进行评价,稳定性检验采用直线拟合,t检验法进行评估。经检验,样品均匀性、稳定性良好;定值采用11家实验室协作,采用2种以上不同原理的方法进行测试,定值组分包括主量元素、微量元素共25项,其中24项提供认定值及不确定度,Hg提供参考值。磷的含量分别为0.285%、不确定度0.010%,0.735%、不确定度0.020%,1.73%、不确定度0.05%,总铁含量分别为35.18%、不确定度0.20%,41.46%、不确定度0.20%,51.44%、不确定度0.13%。本次研制的高磷铁矿石标准物质可用于高磷铁矿的勘查、评价和综合利用开发中对标准物质的需求。

关键词: 高磷铁矿石, 标准物质, 均匀性, 稳定性, 认定值

要点

(1) 高磷铁矿石中磷和铁含量均成一定梯度,覆盖高磷铁矿的含量范围。

(2) 高磷铁矿石定值组分包含主量元素、微量元素等共25项。

(3) 定值方法、不确定评定、定值准确度等达到同类标准物质水平。

Preparation of High-phosphorus Iron Ore Reference Materials for Chemical Composition Analysis

ABSTRACT

BACKGROUND:

The analysis and testing process of high-phosphorus iron ore requires quality control of standard materials with similar matrix components, moderate content and fixed value components. At present, there are no certified reference materials available for high-phosphorus iron ore chemical composition analysis in China. The available iron ore reference materials in China and abroad have different matrix compositions and phosphorus contents. Phosphorus content is mostly less than 0.25%, while phosphorus content in high-phosphorus iron ore is higher than 0.25%. It is difficult to meet the analytical quality control requirements of high-phosphorus iron ore products with these reference materials.

OBJECTIVES:

To develop three high-phosphorus iron ore reference materials with contents of iron and phosphorus forming a certain gradient and covering the content range of high phosphorus iron ore.

CANDIDATES CHARACTERISTICS:

The sample GPFe-1 is composed of 40% metallic minerals, 25% quartz, 15% colloidal phosphate, 20% oolitic chlorite, clay mineral, apatite, carbonate minerals, rock debris and a small amount of organic matter. The metal minerals are hematite, limonite and pyrite.The contents of iron and phosphorus are 31%-37% and 0.1%-0.5%, respectively. The sample GPFe-2 consists of 40% hematite, 5% limonite, 55% gangue mineral, and minor collophanite and pyrite. The iron and phosphorus contents in GPFe-2 are 38%-44% and 0.6%-1.0%, respectively. The sample GPFe-3 is composed of 70% metallic minerals (hematite, limonite, pyrite), 5% quartz, 1% collophane, 3% chlorite, 1% cuttings, and minor apatite and calcite. The contents of iron and phosphorus in this sample are 48%-55% and 1.4%-2.0%, respectively.

METHODS:

The samples of high-phosphorus iron ores were collected from the western Hubei Yelangping mining area in Zigui county of Yichang city, the Enshi Changling mining area (Wuhan iron and steel corporation mining area), and the Huoshaoping mining area in Changyang county of Yichang city (Bao Steel Group Changyang mining area). Uniformity and stability were tested for 25 components of SiO2, Al2O3, TiO2, P, K2O, Na2O, Fe, MnO, CaO, MgO, FeO, LOI, S, Cu, Pb, Zn, Cr, Ni, Co, Cd, Sr, Ba, V, As and Hg. Uniformity test was evaluated by variance analysis F test and relative standard deviation of test results. Stability test was evaluated by linear fitting and t-test.

RESULTS:

Three samples were homogeneous and stable. The RSD of major elements and trace elements of 3 samples was less than 5%. The F value of variance test was less than the critical value F0.05(24, 25)=1.96, indicating that all the components of 3 samples were homogeneous. The stability test showed that the components of 3 samples had no directional change and statistically significant differences, indicating that the elements in the 3 samples were stable. The verified value was tested by 11 laboratories and by two or more different principles. The verified value components included 25 major elements and trace elements. Three components of Na2O, S and Hg of GPFe-1 had reference values, whereas other 22 components had certified values and uncertainties. The contents of iron and phosphorus in GPFe-1 were 35.18%±0.20% and 0.285%±0.010%, respectively. Two components of Cd and Hg in GPFe-2 had reference values, and other 23 components had certified values and uncertainties. The contents of iron and phosphorus in GPFe-2 were 41.46%±0.20% and 0.735%±0.020%, respectively. Two components of FeO and Hg in GPFe-3 had reference values, while other 23 components had certified values and uncertainties. The contents of iron and phosphorus in GPFe-3 were 51.44%±0.13% and 1.73%±0.05%, respectively.

CONCLUSIONS:

The developed high-phosphorus iron ore reference materials meet the requirements for exploration, evaluation, and comprehensive utilization of high-phosphorus iron ore.

KEY WORDS: high-phosphorus iron ore, reference materials, uniformity, stability, certified values

HIGHLIGHTS

(1) The contents of phosphorus and iron in high-phosphorus iron ore form a certain gradient, covering the content range of high-phosphorus iron ore.

(2) 25 components with certified values in high-phosphorus iron ore include major elements and trace elements.

(3) The method of certified value, uncertainty evaluation and accuracy achieve the same level of as reference materials.

本文参考文献

[1]

张亮, 杨卉芃, 冯安生, 等. 全球铁矿资源开发利用现状及供需分析[J]. 矿产保护与利用, 2016, (6): 57-63.

Zhang L, Yang H P, Feng A S, et al. Study on utilization and analysis of supply and demand of global iron ore resources[J]. Conservation and Utilization of Mineral Resources, 2016, (6): 57-63.

[2]

崔立伟, 夏浩东, 王聪, 等. 中国铁矿资源现状与铁矿实物地质资料筛选[J]. 地质与勘探, 2012, 48(5): 894-905.

Cui L W, Xia H D, Wang C, et al. Current status of iron-ore resources in China and screening of object iron-ore geological data[J]. Geology and Exploration, 2012, 48(5): 894-905.

[3]

阴江宁, 肖克炎, 娄德波, 等. 中国铁矿预测模型与资源潜力分析[J]. 地学前缘, 2018, 25(3): 107-117.

Yin J N, Xiao K Y, Lou D B, et al. Prediction model and resource potential of iron in China[J]. Earth Science Frontiers, 2018, 25(3): 107-117.

[4]

范松梅, 沙景华, 闫晶晶, 等. 中国铁矿石资源供应风险评价与治理研究[J]. 资源科学, 2018, 40(3): 507-515.

Fan S M, Sha J H, Yan J J, et al. Risk assessment and management of iron ore resource supply in China[J]. Resources Science, 2018, 40(3): 507-515.

[5]

刘云勇,贺爱平,秦元奎. 中国宁乡式铁矿[M] . 北京: 冶金工业出版社, 2017

Liu Y Y,He A P,Qin Y K. Chinese Ningxiang Iron Ore[M] . Beijing: Metallurgical Industry Press, 2017
[6]

韩跃新, 孙永升, 高鹏, 等. 高磷鲕状赤铁矿开发利用现状及发展趋势[J]. 金属矿山, 2012, (3): 1-5.

Han Y X, Sun Y S, Gao P, et al. Exploitation situation and development trend of high phosphorus oolitic hematite[J]. Metal Mine, 2012, (3): 1-5.

[7]

杨舒萍, 卿山, 邓文龙, 等. 高磷铁矿工艺矿物学研究[J]. 工业加热, 2015, 44(1): 44-47. doi: 10.3969/j.issn.1002-1639.2015.01.013

Yang S P, Qing S, Deng W L, et al. Study on technological mineralogy of high phosphorus iron ore[J].Industrial Heating, 2015, 44(1): 44-47. doi: 10.3969/j.issn.1002-1639.2015.01.013

[8]

贺爱平. 鄂西高磷铁矿选冶技术及开发方式探讨[J]. 资源环境与工程, 2013, 27(5): 688-693. doi: 10.3969/j.issn.1671-1211.2013.05.017

He A P. Disussion on beneficiation & metallurgy technology and development mode of high phosphorus iron ore, Western Hubei[J].Resources Environment & Engineering, 2013, 27(5): 688-693. doi: 10.3969/j.issn.1671-1211.2013.05.017

[9]

艾光华, 李晓波, 周源, 等. 高磷铁矿石脱磷技术研究现状及发展趋势[J]. 有色金属科学与工程, 2011, 2(4): 53-58.

Ai G H, Li X B, Zhou Y, et al. Research status and trend of the dephosphorization technology of high-phosphorus iron ore[J]. Nonferrous Metals Science and Engineering, 2011, 2(4): 53-58.

[10]

黄凯, 修祎帆, 郭占成, 等. 高磷铁矿脱磷技术现状及磷资源化提取新方法[J]. 钢铁, 2016, 51(10): 1-5.

Huang K, Xiu Y F, Guo Z C, et al. Advance in dephosphorisation of high phosphorus iron ore and new technology of recovering phosphorus as a resource[J]. Iron and Steel, 2016, 51(10): 1-5.

[11]

郭威, 孙永升, 杨耀辉, 等. 高磷鲕状赤铁矿脱磷处理研究进展[J]. 矿产综合利用, 2014, (6): 15-19. doi: 10.3969/j.issn.1000-6532.2014.06.004

Guo W, Sun Y S, Yang Y H, et al. Research progress of dephosphorization of high phosphorus oolitic hematite[J].Multipurpose Utilization of Mineral Resources, 2014, (6): 15-19. doi: 10.3969/j.issn.1000-6532.2014.06.004

[12]

朱德庆, 王浩, 潘建, 等. 机械活化强化高磷粗铁精矿酸浸脱磷的工艺及机理[J]. 中南大学学报(自然科学版), 2017, 48(3): 553-561.

Zhu D Q, Wang H, Pan J, et al. Technology and mechanism of mechanical activation enhancing acid leaching dephosphorization of high phosphorus rough iron ore concentrate[J]. Journal of Central South University (Science and Technology), 2017, 48(3): 553-561.

[13]

向杰, 肖春桥, 刘婷婷, 等. 4种添加剂对黑曲霉脱除高磷铁矿中磷的影响[J]. 矿冶工程, 2016, 36(4): 76-79. doi: 10.3969/j.issn.0253-6099.2016.04.020

Xiang J, Xiao C Q, Liu T T, et al. Effects of four additives on dephosphorization of high-phosphorus iron ore by aspergillus niger[J].Mining and Metallurgical Engineering, 2016, 36(4): 76-79. doi: 10.3969/j.issn.0253-6099.2016.04.020

[14]

肖婉琴. 云南某高磷铁矿直接还原同步脱磷试验研究[J]. 矿冶, 2017, 26(3): 5-8. doi: 10.3969/j.issn.1005-7854.2017.03.002

Xiao W Q. Study of direct reduction and synchronous dephosphorization for high-phosphorus hematite from Yunnan[J].Mining and Metallurgy, 2017, 26(3): 5-8. doi: 10.3969/j.issn.1005-7854.2017.03.002

[15]

王辉, 张建松, 孙瑞靖, 等. 高磷铁矿气化脱磷理论及试验研究[J]. 钢铁钒钛, 2018, 39(2): 110-114.

Wang H, Zhang J S, Sun R J, et al. Theoretical and experimental study on gasification dephosphorization in high-phosphorus iron ore[J]. Iron Steel Vanadium Titanium, 2018, 39(2): 110-114.

[16]

Jochum K P, Weis U, Schwager B, et al. Reference values following ISO guidelines for frequently requested rock reference materials[J].Geostandards and Geoanalytical Research, 2016, 40(3): 333-350. doi: 10.1111/ggr.2016.40.issue-3

[17]

Weis U, Schwager B, Nohl U, et al. Geostandards and geoanalytical research bibliographic review 2015[J].Geostandards and Geoanalytical Research, 2016, 40(4): 599-601. doi: 10.1111/ggr.2016.40.issue-4

[18]

黄宏库, 程志中, 刘妹, 等. 铬铁矿标准物质研制[J]. 化学分析计量, 2010, 19(5): 4-6. doi: 10.3969/j.issn.1008-6145.2010.05.001

Huang H K, Cheng Z Z, Liu M, et al. Development of reference materials of chrimote[J].Chemical Analysis and Meterage, 2010, 19(5): 4-6. doi: 10.3969/j.issn.1008-6145.2010.05.001

[19]

洪飞, 刘耀华, 吕振生, 等. 钛铁矿化学成分标准物质研制[J]. 岩矿测试, 2014, 33(1): 67-73. doi: 10.3969/j.issn.0254-5357.2014.01.012

Hong F, Liu Y H, Lü Z S, et al. Certified reference materials preparation of ilmenite chemical composition[J]. Rock and Mineral Analysis, 2014, 33(1): 67-73. doi: 10.3969/j.issn.0254-5357.2014.01.012

[20]

程志中, 顾铁新, 范永贵, 等. 九个铁矿石标准物质研制[J]. 岩矿测试, 2010, 29(3): 305-308. doi: 10.3969/j.issn.0254-5357.2010.03.023

Cheng Z Z, Gu T X, Fan Y G, et al. Preparation of nine iron reference materials of GFe1-GFe9[J]. Rock and Mineral Analysis, 2010, 29(3): 305-308. doi: 10.3969/j.issn.0254-5357.2010.03.023

[21]

谢承祥, 李厚民, 王瑞江, 等. 中国查明铁矿资源储量的数量、分布及保障程度分析[J]. 地球学报, 2009, 30(3): 387-394. doi: 10.3321/j.issn:1006-3021.2009.03.013

Xie C X, Li H M, Wang R J, et al. Analysis of the quantity and distribution of the total identified iron resources in China and their supply capability[J].Acta Geoscientica Sinica, 2009, 30(3): 387-394. doi: 10.3321/j.issn:1006-3021.2009.03.013

[22]

刘云勇, 姚敬劬, 万传辉, 等. 鄂西泥盆纪沉积铁矿成矿元素和主要伴生元素分布规律[J]. 资源环境与工程, 2016, 30(1): 17-24.

Liu Y Y, Yao J Q, Wan C H, et al. Distribution law of the ore-forming element and major associated elements in the devonian sedimentary iron deposits, Western Hubei[J]. Resources Environment and Engineering, 2016, 30(1): 17-24.

[23]

郑赫.鄂西宁乡式铁矿地球化学特征及对成矿环境的指示[D].北京: 中国地质大学(北京), 2016.

Zheng H.Geochemical Characteristics of Ningxiang-type Iron Deposits in the West of Hubei Province and Their Implication for Metallogenic Environment[D].Beijing: China University of Geosciences (Beijing), 2016.

[24]

王树林, 黄志良, 杨超, 等. 鄂西某高磷铁矿中磷的赋存状态[J]. 有色金属工程, 2014, 4(2): 58-60. doi: 10.3969/j.issn.2095-1744.2014.02.013

Wang S L, Huang Z L, Yang C, et al. The existent states of phosphorus in a high phosphorus iron ore in Western Hubei[J].Nonferrous Metals Engineering, 2014, 4(2): 58-60. doi: 10.3969/j.issn.2095-1744.2014.02.013

[25]

Botha A, Ellison S, Linsinger T, et al. Outline for the revision of ISO Guide 35[J].Accreditation and Quality Assurance, 2013, 18: 115-118. doi: 10.1007/s00769-012-0940-0

[26]

宋丽华, 郝原芳, 杨柳, 等. 地质标准物质的研制方法[J]. 地质与资源, 2013, 22(5): 419-421. doi: 10.3969/j.issn.1671-1947.2013.05.013

Song L H, Hao Y F, Yang L, et al. Preparation on method of geochemical reference materials[J].Geology and Resources, 2013, 22(5): 419-421. doi: 10.3969/j.issn.1671-1947.2013.05.013

[27]

刘妹, 顾铁新, 潘含江, 等. 泛滥平原沉积物标准物质研制[J]. 岩矿测试, 2018, 37(5): 558-571.

Liu M, Gu T X, Pan H J, et al. Preparation of seven reference materials for floodplain sediments[J]. Rock and Mineral Analysis, 2018, 37(5): 558-571.

[28]

杨理勤. 常量金标准物质标准值的不确定度评定方法[J]. 黄金, 2015, 36(9): 80-82.

Yang L Q. Discussion about the assessment method of the uncertainty degree of certified values from ore gold reference materials[J]. Gold, 2015, 36(9): 80-82.

[29]

曾美云, 刘金, 邵鑫, 等. 磷矿石化学成分分析标准物质研制[J]. 岩矿测试, 2017, 36(6): 633-640.

Zeng M Y, Liu J, Shao X, et al. Preparation of phosphate ore concentrate reference materials[J]. Rock and Mineral Analysis, 2017, 36(6): 633-640.

[30]

赵晓亮, 李志伟, 王烨, 等. 铌钽精矿标准物质研制[J]. 岩矿测试, 2018, 37(6): 687-694.

Zhao X L, Li Z W, Wang Y, et al. Preparation and certification of niobium-tantalum concentrate reference materials[J]. Rock and Mineral Analysis, 2018, 37(6): 687-694.

相似文献(共20条)

[1]

蔡玉曼. 硅钼蓝分光光度法测定钛铁矿中二氧化硅不确定度评定. 岩矿测试, 2008, 27(2): 123-126.

[2]

洪飞, 刘耀华, 吕振生, 赵伟, 王卿, 张英明. 钛铁矿化学成分标准物质研制. 岩矿测试, 2014, 33(1): 63-73.

[3]

曾美云, 刘金, 邵鑫, 邹棣华. 磷矿石化学成分分析标准物质研制. 岩矿测试, 2017, 36(6): 633-640. doi: 10.15898/j.cnki.11-2131/td.201705170082

[4]

赵晓亮, 李志伟, 王烨, 王君玉, 仲伟路, 陈砚. 铌钽精矿标准物质研制. 岩矿测试, 2018, 37(6): 687-694. doi: 10.15898/j.cnki.11-2131/td.201711230185

[5]

白亚之, 朱爱美, 崔菁菁, 施美娟, 高晶晶, 张俊. 中国近海沉积物氮和有机碳标准物质的研制. 岩矿测试, 2014, 33(1): 74-80.

[6]

刘瑱, 马玲, 时晓露, 查立新. 石英岩化学成分分析标准物质研制. 岩矿测试, 2014, 33(6): 849-856.

[7]

李曼, 王连和. 区域地球化学样品分析质量管理计算机控制. 岩矿测试, 2008, 27(3): 219-222.

[8]

闵广全, 张世涛, 杨光, 邵九龙, 陈海英, 陈国娟, 张激光. 锗矿石和铟矿石化学成分分析标准物质研制. 岩矿测试, 2015, 34(3): 335-339. doi: 10.15898/j.cnki.11-2131/td.2015.03.013

[9]

奥地利安东帕有限公司. 密闭微波消解-ICPOES法测定钢铁样品中硅. 岩矿测试, 2008, 27(2): I-I.

[10]

谷云秋, 李庆祥. 硫铁矿石标准物质研制中有关问题的探讨. 岩矿测试, 1992, (3): 256-259.

[11]

程志中, 刘妹, 张勤, 顾铁新, 黄宏库. 水系沉积物标准物质研制. 岩矿测试, 2011, 30(6): 714-722.

[12]

杨理勤, 冯亮, 李玄辉, 陈占生. 高含量金样品均匀性的分析检验. 岩矿测试, 2009, 28(4): 388-390.

[13]

郭玉林, 才书林. X射线荧光光谱法在有色金属矿石标准物质定值分析中的应用. 岩矿测试, 1992, (3): 260-264.

[14]

刘玉龙, 夏凡, 张洪志. 挥发性有机污染物标准物质使用的短期稳定性评价. 岩矿测试, 2012, 31(4): 647-652.

[15]

程志中, 顾铁新, 范永贵, 黄宏库, 刘 妹, 鄢卫东, 鄢明才. 九个铁矿石标准物质研制. 岩矿测试, 2010, 29(3): 305-308.

[16]

刘唯一, 陈勇, 王淼, 张韩静. 盐类对甲烷水合物稳定性影响研究进展. 岩矿测试, 2018, 37(2): 111-120. doi: 10.15898/j.cnki.11-2131/td.201706110098

[17]

唐肖玫, 郭茂生. 铁矿石物相分析标准物质的研制. 岩矿测试, 1996, (4): 311-318.

[18]

程志中, 刘妹, 黄宏库, 顾铁新, 鄢卫东. 镍矿石和镍精矿标准物质研制. 岩矿测试, 2013, 32(4): 600-607.

[19]

杜钰娉, 张汉萍, 李海萍, 董薇, 刘文华. 地下水中高锰酸盐指数和硝酸根铵根稳定性研究. 岩矿测试, 2014, 33(3): 424-430.

[20]

杨理勤, 穆新华, 郑振云. 常量金标准物质定值中离群值的统计识别. 岩矿测试, 2013, 32(3): 483-486.

计量
  • PDF下载量(16)
  • 文章访问量(220)
  • HTML全文浏览量(29)
  • 被引次数(0)
目录

Figures And Tables

高磷铁矿石成分分析标准物质研制

曾美云, 陈燕波, 刘金, 王迪民