

稀有矿物天津蓟县锰方硼石振动光谱特征研究
中国地质大学(北京)地球科学与资源学院, 北京 100083 |
Vibrational Spectroscopy Characteristics of Rare Mineral Chambersite in Jixian of Tianjin, China
School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China |
摘要:锰方硼石是一种罕见的锰氯硼酸盐矿物(Mn3B7O13Cl),天津蓟县锰方硼石矿床是世界上唯一一个锰方硼石矿床,该地锰方硼石矿物粒度细小(50~300 nm),与美国锰方硼石存在明显差别。目前涉及我国锰方硼石的研究较少,为了探究稀有矿物蓟县锰方硼石矿物学和材料学特征,本文对其进行振动光谱和高温拉曼光谱研究。常温振动光谱结果表明,蓟县锰方硼石与美国锰方硼石各主要谱带归属一致,但峰位整体上表现为向高频方向偏移且谱峰宽、强度小。高温拉曼光谱显示,随着温度升高,谱带向低频方向偏移,位移距离随温度升高呈现先增大后减小的趋势,且在680~687 K处位移距离出现转折。蓟县锰方硼石粒度细小是造成上述谱峰变化的主要原因。本文运用高温拉曼技术对粒度极为细小的锰方硼石进行测试分析,研究其谱峰变化与相变的关系,实验证明高温拉曼光谱可以作为研究矿物相变的一种有效手段。
Vibrational Spectroscopy Characteristics of Rare Mineral Chambersite in Jixian of Tianjin, China
ABSTRACT Chambersite (Mn3B7O13Cl) is a type of rare mineral. The Chambersite deposit in Jixian, Tianjin is the only commercially valuable deposit in the world. The Chambersite particle in Jixian is very fine (50-300 nm), which is different from that of American Chambersite. Until now, little study was carried out has been conducted on Chinese Chambersite. In order to explore the mineralogical and material characteristics of Chambersite in Jixian, a Vibration Spectrum and high-temperature Raman Spectrum were recorded. Normal-temperature Vibration Spectrum shows that the main spectrum band assignment of Chinese Chambersite is the same as that of American Chambersite. However, as a whole, the peak position is shifted toward the high-frequency direction and the spectral width and intensity are small. High-temperature Raman Spectroscopy shows that with the increase of temperature, bands generally shift to the low frequency, the displacement distance increases first and then decreases, and the displacement distance turns at 680-687 K. The small particle size is the main reason for spectrum peak changes. High-temperature Raman Spectroscopy technique was used to test and analyze Chambersite with very fine particle size, and the relationship between the peak change and phase transition was studied, thus demonstrating that high temperature Raman Spectroscopy can be used as an effective method to study mineral phase transition.

本文参考文献
[1] |
肖成东, 张静, 张宝华, 等. 天津蓟县锰方硼石矿床[J]. 地质调查与研究, 2007, 30(3): 186-191. Xiao C D, Zhang J, Zhang B H, et al. Chambersite deposit in Jixian, Tianjin[J]. Geological Survey and Research, 2007, 30(3): 186-191. |
[2] |
肖荣阁, 大井隆夫, 侯万荣, 等. 天津蓟县硼矿床锰方硼石矿物的硼同位素研究[J]. 现代地质, 2002, 16(3): 270-275. Xiao R G, Tako O, Hou W R, et al. Boron isotopic composition of Dongshuichang Chambersite deposit, Jixian, Tianjin, China[J]. Geoscience, 2002, 16(3): 270-275. |
[3] |
王秋舒, 许虹, 高燊, 等. 稀有矿物锰方硼石的合成及其矿床地质意义[J]. 地学前缘, 2013, 20(3): 123-130. Wang Q S, Xu H, Gao S, et al. Synthesis of the rare mineral Chambersite and its ore deposit geological significance[J]. Earth Science Frontiers, 2013, 20(3): 123-130. |
[4] |
Grice J D, Gault R A, Velthuizen J V, et al. Borate minerals of the Penobsquis and Millstream Deposit, Southern New Brunswick[J].Canadian Mineralogist, 2005, 43: 1469-1488. doi: 10.2113/gscanmin.43.5.1469 |
[5] |
王秋舒. 天津蓟县锰方硼石矿物学特征及其成矿机理初探[D]. 北京: 中国地质大学(北京), 2013. Wang Q S. Mineralogical Characteristcis of the Chambersite and Its Ore Genesis of Jixian, Tianjin[D]. Beijing: China University of Geosciences (Beijing), 2013. |
[6] |
王富良, 付勇, 徐志刚, 等. 天津蓟县东水厂锰方硼石矿床成因新认识[J]. 地质学报, 2016, 90(2): 398-408. Wang F L, Fu Y, Xu Z G, et al. The new understanding of the cause of Dongshuichang Chambersite deposit in Jixian, Tianjin[J]. Acta Geologica Sinica, 2016, 90(2): 398-408. |
[7] |
Fan D L, Yang P J, Wang R, et al. Characteristics and origin of the Middle Proterozoic Dongshuichang Chambersite deposit, Jixian, Tianjin, China[J].Ore Geology Reviews, 1999, 15(1-3): 15-29. doi: 10.1016/S0169-1368(99)00012-8 |
[8] |
曾贻善. 锰方硼石的合成及其地球化学意义[J]. 地质学报, 1983, (4): 401-409. Zeng Y S. Synthesis of Chambersite and its geochemical implication[J]. Acta Geologica Sinica, 1983, (4): 401-409. |
[9] |
Frost R L, Lópze A, Scholz R, et al. Vibrational spectro-scopy of the borate mineral Chambersite Mn3B7O13Cl-Implications of the molecular structure[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2014, 120: 270-273. doi: 10.1016/j.saa.2013.10.026 |
[10] |
查福标, 谢先德, 彭文世, 等. 硼酸盐矿物的振动光谱研究:Ⅲ.理论分析[J]. 矿物学报, 1993, 13(4): 303-308. Zha F B, Xie X D, Peng W S, et al. vibrational spectral study of Borates-Ⅲ.Theoretical analyses[J]. Acta Mineralogic Sinica, 1993, 13(4): 303-308. |
[11] |
查福标, 谢先德, 彭文世, 等. 硼酸盐矿物的振动光谱研究:Ⅱ.红外光谱特征[J]. 矿物学报, 1993, 13(3): 230-236. Zha F B, Xie X D, Peng W S, et al. A vibrational spectral study of Borates-Ⅱ.Infraed spectroscopy[J].Acta Mineralogic Sinica, 1993, 13(3): 230-236. |
[12] |
Wachowiak J, Pieczak A. Congolite and Trembathite from the Klodawa salt mine, central Poland:Records of the thermal history of the parental salt dome[J].The Canadian Mineralogist, 2012, 50: 1387-1399. doi: 10.3749/canmin.50.5.1387 |
[13] |
谢先德, 查福标. 硼酸盐矿物的振动光谱研究:Ⅰ.拉曼光谱特征[J]. 矿物学报, 1993, 13(2): 130-136. Xie X D, Zha F B. vibrational spectral study of Borates-Ⅰ.Raman spectroscopy[J]. Acta Mineralogic Sinica, 1993, 13(2): 130-136. |
[14] |
陈辉, 蒋国昌, 尤静林, 等. 高温拉曼光谱技术的实现及应用[J]. 光谱学与光谱分析, 2007, 27(12): 2464-2467. Chen H, Jiang G C, You J L, et al. High temperature Raman spectroscopy techniques and its applications[J]. Spectroscopy and Spectral Analysis, 2007, 27(12): 2464-2467. |
[15] |
陈辉, 蒋国昌, 尤静林, 等. 高温拉曼光谱提高信噪比的途径分析[J]. 光谱学与光谱分析, 2007, 27(6): 1148-1151. Chen H, Jiang G C, You J L, et al. Analysis of different methods for denoising of high temperature Raman spectra[J]. Spectroscopy and Spectral Analysis, 2007, 27(6): 1148-1151. |
相似文献(共20条)
[1] |
宁珮莹, 张天阳, 马泓, 谢俊, 丁汀, 黎辉煌, 梁榕. 红外光谱-显微共焦激光拉曼光谱研究天然红宝石和蓝宝石中含水矿物包裹体特征. 岩矿测试, 2019, 38(6): 640-648. doi: 10.15898/j.cnki.11-2131/td.201903050033 |
[2] |
任叶叶, 张俭, 严俊, 林剑, 陈思杭, 盛嘉伟. 应用X射线衍射-红外光谱等技术研究滑石在机械力研磨中的形貌和晶体结构变化及影响机制. 岩矿测试, 2015, 34(2): 181-186. doi: 10.15898/j.cnki.11-2131/td.2015.02.005 |
[3] |
周丹怡, 陈华, 陆太进, 柯捷, 何明跃. 基于拉曼光谱-红外光谱-X射线衍射技术研究斜硅石的相对含量与石英质玉石结晶度的关系. 岩矿测试, 2015, 34(6): 652-658. doi: 10.15898/j.cnki.11-2131/td.2015.06.008 |
[4] |
胡海祥, 范作鹏, 牛桂强, 刘洪澜, 刘海龙, 王攀志. 焦家金矿选厂旋流器溢流产品工艺矿物学分析. 岩矿测试, 2014, 33(4): 535-544. |
[5] |
孟洁, 李妍. 应用光谱-电镜-热解析手段表征两种金属有机配合物及其对多环芳烃的吸附性能研究. 岩矿测试, 2014, 33(6): 876-884. |
[6] |
兰延, 陆太进, 陈伟明, 刘洋, 梁榕, 马瑛, 张小虎. 基于相对密度和X射线粉晶衍射技术测定硬玉岩中硬玉的含量. 岩矿测试, 2015, 34(2): 207-212. doi: 10.15898/j.cnki.11-2131/td.2015.02.009 |
[7] | |
[8] | |
[9] |
冉敬, 杜谷, 潘忠习. 衰减全反射-傅里叶红外光谱法快速测试干酪根样品. 岩矿测试, 2010, 29(2): 113-117. |
[10] |
李志明, 施伟军, SHERWOOD Neil, 刘文斌, 蒋宏. 激光拉曼光谱法分析多种显微组分荧光变化及其应用. 岩矿测试, 2008, 27(5): 341-345. |
[11] |
何佳乐, 潘忠习, 冉敬. 激光拉曼光谱法在单个流体包裹体中的应用进展. 岩矿测试, 2015, 34(4): 383-391. doi: 10.15898/j.cnki.11-2131/td.2015.04.002 |
[12] |
周瑶琪, 陈勇, 葛云锦. 流体包裹体成分测定的低温相变和显微拉曼光谱分析技术研究进展. 岩矿测试, 2008, 27(3): 207-210. |
[13] |
尚文郁, 谢曼曼, 王淑贤, 孙青, 岑况. 应用近红外光谱法研究泻湖湿地沉积物重金属活动态特征及生态风险评价. 岩矿测试, 2020, 39(4): 597-608. doi: 10.15898/j.cnki.11-2131/td.202001010001 |
[14] | |
[15] |
王智宏 林君 武子玉 朱虹 占细雄. 便携式近红外光谱矿物分析仪分光系统研制. 岩矿测试, 2005, (1): 59-61. |
[16] |
修连存, 郑志忠, 俞正奎, 黄俊杰, 陈春霞, 殷靓, 王弥建, 张秋宁, 黄宾, 修铁军, 吴萍. 近红外光谱仪测定岩石中蚀变矿物方法研究. 岩矿测试, 2009, 28(6): 519-523. |
[17] |
武素茹, 宋义, 谷松海, 郭芬, 孙鑫. X射线荧光光谱-X射线衍射-红外光谱联用技术鉴别锰矿与锰冶炼渣. 岩矿测试, 2015, 34(6): 659-664. doi: 10.15898/j.cnki.11-2131/td.2015.06.009 |
[18] |
周瑶琪, 倪培, 陈勇. 一种获取包裹体内压的新方法——二氧化碳拉曼光谱法. 岩矿测试, 2006, 25(3): 211-214. |
[19] |
孟庆国, 刘昌岭, 李承峰, 郝锡荦. X射线粉晶衍射-拉曼光谱法研究含甲烷双组分水合物结构及谱学特征. 岩矿测试, 2021, 40(1): 85-94. doi: 10.15898/j.cnki.11-2131/td.202005290077 |
[20] |
杜谷, 王坤阳, 冉敬, 王风玉, 潘忠习. 红外光谱/扫描电镜等现代大型仪器岩石矿物鉴定技术及其应用. 岩矿测试, 2014, 33(5): 625-633. |
计量
- PDF下载量(64)
- 文章访问量(12109)
- HTML全文浏览量(5094)
- 被引次数(0)