【引用本文】 张磊, 李迎春, 屈文俊, 等. 离子吸附型稀土监控样定值研究[J]. 岩矿测试, 2020, 39(6): 878-885. doi: 10.15898/j.cnki.11-2131/td.202004230058
ZHANG Lei, LI Ying-chun, QU Wen-jun, et al. Preparation of Ion-adsorption Type REE Monitoring Samples[J]. Rock and Mineral Analysis, 2020, 39(6): 878-885. doi: 10.15898/j.cnki.11-2131/td.202004230058

离子吸附型稀土监控样定值研究

国家地质实验测试中心, 北京 100037

收稿日期: 2020-04-23  修回日期: 2020-07-30  接受日期: 2020-09-19

基金项目: 中国地质调查局中国地质科学院基本科研业务费项目(CSJ201602);中国地质调查局中国地质科学院基本科研业务费专项(CJYYWF20182602);中国地质调查局地质调查工作项目(DD20190323)

作者简介: 张磊, 硕士, 工程师, 主要从事岩石矿物测试技术应用与研究。E-mail:zhang.lei.198806@163.com

Preparation of Ion-adsorption Type REE Monitoring Samples

National Research Center for Geoanalysis, Beijing 100037, China

Received Date: 2020-04-23
Revised Date: 2020-07-30
Accepted Date: 2020-09-19

摘要:离子吸附型稀土矿是中国极其重要、世界罕见的矿床类型,是中国的优势矿产资源。目前现有的稀土标样全部为稀土矿石成分分析标样,稀土元素以氧化物形式稳定存在,无法淋滤浸取,不能对离子吸附型稀土淋滤过程进行监控。为进一步满足离子吸附型稀土资源勘查和评价需要,本文按照导则《标准物质定值的通用原则及统计学原理》(JJF 1343—2012),制备了三种岩性共9个离子吸附型稀土监控样。样品采自南岭地区典型富轻稀土(HREE)离子吸附型稀土风化壳,经干燥、球磨至200目后混合机混匀,以硫酸铵淋滤、电感耦合等离子体质谱法(ICP-MS)测试离子相稀土元素含量,检验样品均匀性,结果表明F值小于临界值F0.05(19,20),样品均匀性良好。在两年内对样品进行4次稳定性检验,在95%置信度时│β1│ <t0.05×sβ1),未发现明显不稳定变化,表明稳定性良好。由8家技术权威的实验室进行协作定值,经过统计计算给出各离子相稀土元素含量的加权平均值和扩展不确定度,定值结果涵盖除Sc以外的15种稀土元素。该系列监控样的研制能够为离子吸附型稀土矿产资源评价和有效利用等工作提供计量支撑。

关键词: 离子吸附型稀土, 稀土元素, 淋滤, 监控样, 定值

要点

(1) 制备了9个离子吸附型稀土监控样,定值成分达15种。

(2) 监控样的均匀性、稳定性及定值均满足JJF 1343—2012的要求。

(3) 监控样的制备为完善稀土标准物质体系奠定了基础。

Preparation of Ion-adsorption Type REE Monitoring Samples

ABSTRACT

OBJECTIVES:

Ion-adsorption type rare earth ore is extremely important in China and rare in the world. It is China's dominant mineral resource. At present, all the rare earth elements in the existing REE reference materials are oxide minerals, not ion-adsorption type, and cannot be exchanged with strong electrolytes. These reference materials cannot be used to monitor the leaching process of ion-adsorption type REE.

METHODS:

The samples were collected from the typical ion-adsorption type REE weathering crust in Jiangxi Province. After being dried and ball-milled to 200 mesh, they were mixed for 1.5h. The contents of rare earth elements in the ionic phase were analyzed to test the homogeneity by ammonium sulfate leaching and inductively coupled plasma-mass spectrometry (ICP-MS).

RESULTS:

Results showed that the F values for the variance test were less than the threshold, which indicated a good homogeneity. The stability of monitoring samples was tested 4 times in two years, and no statistically significant changes were observed, indicating good stability of the samples. An accurate and reliable leaching analytical method was used in 8 technologically significant laboratories to finalize the contents of ionic phase rare earth elements. The determined values of nine monitoring samples were given by statistical calculation, including weighted average value and total uncertainty results which were from uncertainties in certified values, between-bottle homogeneity and long-term stability. These nine monitoring samples have certified values of 15 ionic phase rare earth elements except Sc.

CONCLUSIONS:

The reference materials can be used to monitor the leaching process and provide metrological support for the analysis of rare earth elements in ionic phase during the evaluation and effective utilization of REE mineral resources.

KEY WORDS: ion-adsorption type rare earth elements, leaching, monitoring samples, certified value,

HIGHLIGHTS

(1) Preparation of 9 ion-adsorption type REE monitoring samples and 15 elements were characterized as certified values.

(2) The homogeneity, stability and certified values met the requirements of JJF 1343—2012.

(3) The preparation of monitoring samples layed a foundation for improving the rare earth reference materials system.

本文参考文献

[1]

Xiao Y F, Feng Z Y, Hu G H, et al. Reduction leaching of rare earth from ion-adsorption type rare earths ore with ferrous sulfate[J].Journal of Rare Earths, 2016, 34(9): 917-923.

[2]

Georgiana A M, Vladimiros G P. Leaching of lanthanides from various weathered elution deposited ores[J]. Canadian Metallurgical Quarterly, 2013, 52(3): 257-264.

[3]

赵芝, 王登红, 王成辉, 等. 离子吸附型稀土找矿及研究新进展[J]. 地质学报, 2019, 93(6): 1454-1465.

Zhao Z, Wang D H, Wang C H, et al. Progress in prospecting and research of ion-adsorption type REE deposits[J].Acta Geologica Sinica, 2019, 93(6): 1454-1465.

[4]

程丽娅. 离子型稀土矿中离子稀土的ICP-AES测定方法研究[J]. 安徽地质, 2017, 27(2): 147-149, 160.

Cheng L Y. Study on determination of rare earth ions in ion-adsorbed rare earth mineral using ICP-MS[J]. Geology of Anhui, 2017, 27(2): 147-149, 160.

[5]

肖燕飞, 黄莉, 李明来, 等. ICP-AES法测定离子吸附型稀土矿镁盐体系稀土浸出液中稀土与非稀土杂质[J]. 稀有金属, 2017, 41(4): 390-397.

Xiao Y F, Huang L, Li M L, et al. Determination of rare earth elements and non-rare earth elements in leaching solution with magnesium salt system of ion-adsorption type rare earth ore by ICP-AES[J]. Chinese Journal of Rare Metals, 2017, 41(4): 390-397.

[6]

Yang X J, Lin A J, Li X L, et al. China's ion-adsorption rare earth resources, mining consequences and preservation[J].Environmental Development, 2013, 8: 131-136.

[7]

Georgiana A M, Vladimiros G P. Recovery of rare earth elements adsorbed on clay minerals:Ⅱ.Leaching with ammonium sulfate[J]. Hydrometallurgy, 2013, 131: 158-166.

[8]

Xiao Y F, Gao G H, Huang L, et al. A discussion on the leaching process of the ion-adsorption type rare earth ore with the electrical double layer model[J]. Minerals Engineering, 2018, 120: 35-43.

[9]

Sanjukta A K, Shailaja P P, Sangita D K, et al. Determination of rare earth elements in Indian kimberlite using inductively coupled plasma mass spectrometer (ICP-MS)[J]. Journal of Radioanalytical and Nuclear Chemistry, 2012, 294: 419-424.

[10]

代小吕, 赵金宝, 贺颖婷, 等. 电感耦合等离子体质谱(ICP-MS)法测定离子吸附型稀土矿中的浸出稀土元素[J]. 中国无机分析化学, 2015, 5(4): 35-40.

Dai X L, Zhao J B, He Y T, et al. Determination of leaching rare earth elements in ion adsorption type rare earth ore by ICP-MS[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(4): 35-40.

[11]

Raunt N M, Huang L S, Lin K C, et al. Uncertainty propagation through correction methodology for the determination of rare earth elements by quadrupole based inductively coupled plasma mass spectrometry[J].Analytica Chimica Acta, 2005, 530(1): 91-103.

[12]

刘贵磊, 许俊玉, 温宏利, 等. 动态反应池-电感耦合等离子体质谱法精确测定配分差异显著的重稀土元素[J]. 桂林理工大学学报, 2016, 36(1): 176-183.

Liu G L, Xu J Y, Wen H L, et al. Determination of heavy rare earth elements of special rare earth ores by inductively coupled plasma mass spectrometry with a dynamic reaction cell[J].Journal of Guilin University of Technology, 2016, 36(1): 176-183.

[13]

Botha A, Ellison S, Linsinger T, et al. Outline for the revision of ISO Guide 35[J]. Accreditation and Quality Assurance, 2013, 18: 115-118.

[14]

Linsinger J T P, Pauwels J, van der Veen A M H, et al. Homogeneity and stability of reference materials[J]. Accreditation and Quality Assurance, 2001, 6(1): 20-25.

[15]

王晓红, 王毅民, 高玉淑, 等. 地质标准物质均匀性检验方法评价与探讨[J]. 岩矿测试, 2010, 29(6): 735-741.

Wang X H, Wang Y M, Gao Y S, et al. A view on homogeneity testing techniques for geochemical reference material in China[J]. Rock and Mineral Analysis, 2010, 29(6): 735-741.

[16]

van der Veen A M H, Linsinger P T, Pauwels J, et al. Uncer-tainty calculation in the certification of reference materials.2.Homogeneity study[J]. Accreditation and Quality Assurance, 2001, 6(1): 26-30.

[17]

杜烨, 王春龙, 刘俊保, 等. GBW(E)130573a标准物质复制均匀性与稳定性评价[J]. 合成材料老化与应用, 2020, 49(2): 44-46, 127.

Du Y, Wang C L, Liu J B, et al. Evaluation of uniformity and stability of reference material of GBW(E)130573a[J].Synthetic Materials Aging and Application, 2020, 49(2): 44-46, 127.

[18]

白玉洁, 李红亮, 李微微, 等. 总有机碳分析仪校准用标准物质的研制[J]. 工业计量, 2020, 30(2): 80-82.

Bai Y J, Li H L, Li W W, et al. Development of certified reference material for calibration of total organic carbon analyser[J].Industrial Measurement, 2020, 30(2): 80-82.

[19]

曾美云, 刘金, 邵鑫, 等. 磷矿石化学成分分析标准物质研制[J]. 岩矿测试, 2017, 36(6): 633-640.

Zeng M Y, Liu J, Shao X, et al. Preparation of phosphate ore reference materials for chemical composition analysis[J]. Rock and Mineral Analysis, 2017, 36(6): 633-640.

[20]

杨理勤, 陈占生, 谢璐, 等. 卡林型金矿砷成分分析标准物质研制[J]. 岩矿测试, 2018, 37(2): 209-216.

Yang L Q, Chen Z S, Xie L, et al. Preparation of gold and arsenic certified reference materials for chemical composition analysis in Carlin-type gold deposits[J]. Rock and Mineral Analysis, 2018, 37(2): 209-216.

[21]

金浩,韩永志. 标准物质及其应用技术[M] . 北京: 中国标准出版社, 2003: 34-35.

Jin H,Han Y Z. Standard reference material and its application technology[M] . Beijing: China Standards Press, 2003: 34-35.
[22]

宋丽华, 郝原方, 杨柳, 等. 地质标准物质的研制方法[J]. 地质与资源, 2013, (5): 419-421.

Song L H, Hao Y F, Yang L, et al. Preparation method of geochemical reference materials[J].Geology and Resources, 2013, (5): 419-421.

[23]

辛文彩, 夏宁, 徐磊, 等. 长江三角洲沉积物标准物质研制[J]. 岩矿测试, 2017, 36(4): 388-395.

Xin W C, Xia N, Xu L, et al. Preparation of Yangtze River Delta sediment reference materials[J]. Rock and Mineral Analysis, 2017, 36(4): 388-395.

[24]

田衎, 杨珺, 孙自杰, 等. 矿区污染场地土壤重金属元素分析标准样品的研制[J]. 岩矿测试, 2017, 36(1): 82-88.

Tian K, Yang J, Sun Z J, et al. Preparation of soil certified reference materials for heavy metals in contaminated sites[J]. Rock and Mineral Analysis, 2017, 36(1): 82-88.

[25]

高捷, 盛成, 卓尚军, 等. X射线荧光光谱分析用的含铁尘泥标准样品的研制[J]. 冶金分析, 2015, 35(2): 74-78.

Gao J, Sheng C, Zhuo S J, et al. Development of ferric-containing dust and sludge standard samples used for X-ray fluorescence spectrometric analysis[J].Metallurgical Analysis, 2015, 35(2): 74-78.

[26]

汪斌, 卢晓华, 王茜, 等. 质量控制图在标准物质稳定性评估中的应用[J]. 化学试剂, 2019, 41(5): 475-477.

Wang B, Lu X H, Wang Q, et al. Application of control chart for assessment of stability of reference materials[J].Huaxue Shiji, 2019, 41(5): 475-477.

[27]

李津, 马健雄, 闫斌, 等. 黑色页岩铁同位素标准物质的研制[J]. 地球学报, 2020, 41(5): 623-629.

Li J, Ma J X, Yan B, et al. The preparation of reference material for Fe isotope measurement of black shale samples[J]. Acta Geoscientica Sinica, 2020, 41(5): 623-629.

[28]

胡德龙, 张雯, 陈家颖, 等. 二氧化碳中一氧化氮气体标准物质研制[J]. 化学分析计量, 2020, 29(2): 8-11.

Hu D L, Zhang W, Chen J Y, et al. Preparation for gas reference material of nitric oxide in carbon dioxide[J].Chemical Analysis and Meterage, 2020, 29(2): 8-11.

[29]

刘妹, 顾铁新, 潘含江, 等. 泛滥平原沉积物标准物质研制[J]. 岩矿测试, 2018, 37(5): 558-571.

Liu M, Gu T X, Pan H J, et al. Preparation of seven certified reference materials for floodplain sediments[J]. Rock and Mineral Analysis, 2018, 37(5): 558-571.

[30]

张磊, 周伟, 朱云, 等. 硫酸铵溶液淋滤-电感耦合等离子体质谱测定离子相稀土分量的方法优化[J]. 岩矿测试, 2018, 37(5): 518-525.

Zhang L, Zhou W, Zhu Y, et al. An optimized method for determination of ionic-phase rare earth elements by ICP-MS using ammonium sulfate leaching[J]. Rock and Mineral Analysis, 2018, 37(5): 518-525.

相似文献(共20条)

[1]

张磊, 周伟, 朱云, 屈文俊, 樊兴涛, 李迎春. 硫酸铵溶液淋滤-电感耦合等离子体质谱测定离子相稀土分量的方法优化. 岩矿测试, 2018, 37(5): 518-525. doi: 10.15898/j.cnki.11-2131/td.201712110192

[2]

郭琳, 温宏利, 王苏明, 屈文俊, 曹亚萍. 地下水中无机多元素测定监控样的制备与应用. 岩矿测试, 2010, 29(5): 575-579.

[3]

贾双琳, 赵平, 杨刚, 孙霞, 何海. 混合酸敞开或高压密闭溶样-ICPMS测定地质样品中稀土元素. 岩矿测试, 2014, 33(2): 186-191.

[4]

门倩妮, 沈平, 甘黎明, 冯博鑫. 敞开酸溶和偏硼酸锂碱熔ICP-MS法测定多金属矿中的稀土元素及铌钽锆铪. 岩矿测试, 2020, 39(1): 59-67. doi: 10.15898/j.cnki.11-2131/td.201905100060

[5]

王娜, 徐铁民, 魏双, 王家松, 曾江萍, 张楠. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素. 岩矿测试, 2020, 39(1): 68-76. doi: 10.15898/j.cnki.11-2131/td.201904010043

[6]

张立锋, 刘杰民, 张翼明. 白云鄂博矿区土壤和植物中稀土元素的分布特征. 岩矿测试, 2019, 38(5): 556-564. doi: 10.15898/j.cnki.11-2131/td.201809200107

[7]

侯贤灯. 原子吸收法测定稀土元素进展. 岩矿测试, 1989, (2): 134-138.

[8]

伊丽莹. 地质样品中稀土元素分析进展. 岩矿测试, 1992, (1): 173-178.

[9]

逯义. X射线荧光光谱法测定稀土精矿中的稀土元素分量. 岩矿测试, 2012, 31(2): 277-281.

[10]

王学锋, 许春雪, 顾雪, 王亚平, 李开, 鲍征宇. 典型稀土矿区周边土壤中稀土元素含量及赋存形态研究. 岩矿测试, 2019, 38(2): 137-146. doi: 10.15898/j.cnki.11-2131/td.201807180085

[11]

何煦, 陈林, 李青会, 顾冬红, 干福熹, 李飞, 李珍. 竹山和马鞍山绿松石微量元素和稀土元素特征. 岩矿测试, 2011, 30(6): 709-713.

[12]

秦颍, 胡雅丽, 黄凤春, 魏国锋, 王昌燧, 徐天进. 利用泥芯中稀土元素示踪青铜器的产地. 岩矿测试, 2007, 26(2): 145-149.

[13]

杨秀清, 李厚民, 李立兴, 刘明军, 陈靖, 白云. 辽宁弓长岭铁矿床磁铁矿稀土元素特征及其地质意义. 岩矿测试, 2012, 31(6): 1058-1066.

[14]

赵芝, 付小方, 任希杰, 方一平, 侯立玮, 王登红, 刘丽君. 四川稀土精矿的稀土元素和微量元素地球化学特征及开发利用意义. 岩矿测试, 2013, 32(5): 810-816.

[15]

刘丽君, 赵芝, 付小方, 任希杰, 方一平, 侯立玮, 王登红. 四川稀土矿尾砂的稀土元素和微量元素地球化学特征及开发利用意义. 岩矿测试, 2013, 32(5): 817-824.

[16]

尹明, 符廷发. 感耦等离子体质谱法测定地质样品中痕量稀土元素的研究. 岩矿测试, 1989, (2): 81-86.

[17]

刘丛强, 马英军. 微波密闭消解-等离子体质谱法测定岩石样品中的稀土元素. 岩矿测试, 1999, (3): 189-192.

[18]

李艳玲, 熊采华, 方金东, 黄慧萍, 陶德刚. 基体分离-电感耦合等离子体质谱测定重晶石中超痕量稀土元素. 岩矿测试, 2005, (2): 87-92.

[19]

李志伟, 邰自安, 任文岩, 高志军, 李艳华. 微波消解电感耦合等离子体质谱法测定黑色页岩中稀有稀土元素. 岩矿测试, 2010, 29(3): 259-262.

[20]

吴磊, 曾江萍, 刘义博, 吴良英, 张莉娟, 郝爽, 王家松. 硼酸溶液敞口酸溶-电感耦合等离子体质谱法测定萤石中稀土元素. 岩矿测试, 2014, 33(1): 20-24.

计量
  • PDF下载量(12)
  • 文章访问量(486)
  • HTML全文浏览量(62)
  • 被引次数(0)
目录

Figures And Tables

离子吸附型稀土监控样定值研究

张磊, 李迎春, 屈文俊, 周伟, 尚文郁, 伊芹