【引用本文】 赵令浩, 詹秀春, 胡明月, 等. 单个熔体包裹体激光剥蚀电感耦合等离子体质谱分析及地质学应用[J]. 岩矿测试, 2013, 32(1): 1-14.
ZHAO Ling-hao, ZHAN Xiu-chun, HU Ming-yue, et al. Laser Ablation-Inductively Coupled Plasma-Mass Spectrometric Analysis Methods of Melt Inclusions and Its Geological Applications[J]. Rock and Mineral Analysis, 2013, 32(1): 1-14.

单个熔体包裹体激光剥蚀电感耦合等离子体质谱分析及地质学应用

1. 

国家地质实验测试中心,北京 100037

2. 

内蒙古自治区第十地质矿产勘查开发院,内蒙古 赤峰 024005

收稿日期: 2012-06-11  接受日期: 2012-07-01

基金项目: 国家地质实验测试中心基本科研业务费项目(2011CSJ02)

通信作者: 赵令浩,研究实习员,从事激光剥蚀-电感耦合等离子体质谱及地球化学研究。E-mail: linghao.zhao@gmail.com

Laser Ablation-Inductively Coupled Plasma-Mass Spectrometric Analysis Methods of Melt Inclusions and Its Geological Applications

1. 

National Research Center for Geoanalysis, Beijing 100037, China

2. 

Inner Mongolia No.10 Institute of Geology and Mineral Exploration and Development, Chifeng 024005, China

Corresponding author: ZHAO Ling-hao, linghao.zhao@gmail.com

Received Date: 2012-06-11
Accepted Date: 2012-07-01

摘要:熔体包裹体可以保留岩浆被捕获时的温度、压力及化学组成等信息,为研究岩浆结晶演化过程提供最直接有效的手段;然而由于取样方法、仪器分辨率和灵敏度等技术手段的限制,熔体包裹体研究(尤其是熔体包裹体成分研究方面)发展相对缓慢。本文在简述熔体包裹体特征与分类的基础上,总结了目前熔体包裹体成分研究的主要技术手段,包括技术特点、适用范围及样品制备等;详细介绍单个熔体包裹体激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)原位分析技术(原理、优缺点、定量方法等),并重点阐述分析过程中可能产生的元素分馏、基体效应及激光剥蚀技术要点等。单个熔体包裹体LA-ICP-MS原位分析技术的发展和完善,避免了传统熔体包裹体成分分析技术需加热均一化、样品制备繁琐等缺点,可直接对成分复杂矿物表面100 μm以下以多相形式存在的熔体包裹体进行整体分析,数据精确度可与电子探针分析和二次离子质谱相媲美,增加了样品中可分析熔体包裹体数量,更全面地反映岩浆演化信息,省时、高效、准确,极大地推动了熔体包裹体研究的发展。近年来,国内外单个熔体包裹体LA-ICP-MS原位分析技术应用于地质学和矿床学领域,在地球深部岩浆过程及岩浆热液矿床成矿理论等方面取得了重要成果。随着激光、质谱等设备的发展及定量方法完善,单个熔体包裹体LA-ICP-MS分析的准确性将进一步提高,同时单个熔体包裹体同位素原位分析技术的发展和应用将再次为熔体包裹体研究带来革命性进展。

关键词: 熔体包裹体, 激光剥蚀电感耦合等离子体质谱, 地质学, 矿床学

Laser Ablation-Inductively Coupled Plasma-Mass Spectrometric Analysis Methods of Melt Inclusions and Its Geological Applications

KEY WORDS: melt inclusion, Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry, geology, ore deposit geology

本文参考文献

[1]

夏林圻. 岩浆岩中的熔体包裹体[J]. 地学前缘, 2002, 9(2): 403-414.

[2]

Danyushevsky L V, Della-Pasqua F N, Sokolov S, et al. Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: Petrological implications[J].Contributions to Mineralogy and Petrology, 2000, 138(1): 68-83. doi: 10.1007/PL00007664

[3]

Danyushevsky L V, McNeill A W, Sobolev A V, et al. Experi-mental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: An overview of techniques, advantages and complications[J].Chemical Geology, 2002, 183(1-4): 5-24. doi: 10.1016/S0009-2541(01)00369-2

[4]

Qin Z, Lu F, Anderson A T, et al. Diffusive reequilibration of melt and fluid inclusions[J].American Mineralogist, 1992, 77(5-6): 565-576.

[5]

Gaetani G A, Watson E B. Open system behavior of olivine-hosted melt inclusions[J].Earth and Planetary Science Letters, 2000, 183(1-2): 27-41. doi: 10.1016/S0012-821X(00)00260-0

[6]

Sobolev A V, Danyushevsky L V. Petrology and Geoch-emistry of Boninites from the North Termination of the Tonga Trench: Constraints on the generation conditions of primary high-Ca boninite magmas[J].Journal of Petrology, 1994, 35(5): 1183-1211. doi: 10.1093/petrology/35.5.1183

[7]

卢焕章,范洪瑞,倪培,欧光习,沈昆,张文淮. 流体包裹体[M] . 北京: 科学出版社, 2004

[8]

Schiano P. Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals[J].Earth-Science Reviews, 2003, 63(1-2): 121-144. doi: 10.1016/S0012-8252(03)00034-5

[9]

Frezzotti M-L. Silicate-melt inclusions in magmatic rocks: Applications to petrology[J].Lithos, 2001, 55(1-4): 273-299. doi: 10.1016/S0024-4937(00)00048-7

[10] Marshall D J. Cathodoluminescence of Geological Materials[M] . Boston: Unwin Hyman, 1988: 146
[11]

Lowenstern J B. Chlorine, fluid immiscibility, and de-gassing in peralkaline magmas from Pantelleria, Italy[J].American Mineralogist, 1994, 79(3-4): 353-369.

[12]

Zhang Y, Belcher R, Ihinger P D, , et al. New calibration of infrared measurement of dissolved water in rhyolitic glasses[J].Geochimica et Cosmochimica Acta, 1997, 61(15): 3089-3100. doi: 10.1016/S0016-7037(97)00151-8

[13]

Burke E A J. Raman microspectrometry of fluid inclusions[J].Lithos, 2001, 55(1-4): 139-158. doi: 10.1016/S0024-4937(00)00043-8

[14]

于福生, 袁万明, 韩松, , 等. 同步辐射X射线荧光微探针技术测定熔融包裹体中的微量元素[J]. 高能物理与核物理, 2004, 28(6): 675-678.

[15]

周云, 汪雄武, 唐菊兴, , 等. 西藏甲玛铜多金属矿含矿斑岩石英斑晶单个熔融包裹体的成分研究[J]. 成都理工大学学报, 2011, 38(1): 92-102.

[16]

Harris A C, Kamenetsky V S, White N C, , et al. Melt inclusions in veins: Linking magmas and porphyry Cu deposits[J].Science, 2003, 302(5653): 2109-2111. doi: 10.1126/science.1089927

[17]

Zajacz Z, Szabó C. Origin of sulfide inclusions in cumulate xenoliths from Nógrád-Gömör volcanic field, Pannonian Basin (North Hungary/South Slovakia)[J].Chemical Geology, 2003, 194(1-3): 105-117. doi: 10.1016/S0009-2541(02)00273-5

[18]

Pettke T, Halter W E, Webster J D, , et al. Accurate quantification of melt inclusion chemistry by LA-ICPMS: A comparison with EMP and SIMS and advantages and possible limitations of these methods[J].Lithos, 2004, 78(4): 333-361. doi: 10.1016/j.lithos.2004.06.011

[19]

Sobolev A V, Shimizu N. Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge[J].Nature, 1993, 363(6425): 151-154. doi: 10.1038/363151a0

[20]

Sobolev A V, Chaussidon M. H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: Implications for H2O storage and recycling in the mantle[J].Earth and Planetary Science Letters, 1996, 137(1-4): 45-55. doi: 10.1016/0012-821X(95)00203-O

[21]

Hauri E, Wang J, Dixon J E, , et al. SIMS analysis of volatiles in silicate glasses: 1. Calibration, matrix effects and comparisons with FTIR[J].Chemical Geology, 2002, 183(1-4): 99-114. doi: 10.1016/S0009-2541(01)00375-8

[22]

Panina L I, Usoltseva L M. Alkaline-ultrabasic mantle-derived magmas, their sources, and crystallization features: Data of melt inclusion studies[J].Lithos, 2008, 103(3-4): 431-444. doi: 10.1016/j.lithos.2007.10.009

[23]

Taylor R P, Jackson S E, Longerich H P, , et al. In situ trace-element analysis of individual silicate melt inclusions by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS)[J].Geochimica et Cosmochimica Acta, 1997, 61(13): 2559-2567. doi: 10.1016/S0016-7037(97)00109-9

[24]

Halter W E, Pettke T, Heinrich C A, , et al. Major to trace element analysis of melt inclusions by laser-ablation ICP-MS: Methods of quantification[J].Chemical Geology, 2002, 183(1-4): 63-86. doi: 10.1016/S0009-2541(01)00372-2

[25]

Zajacz Z, Halter W. LA-ICPMS analyses of silicate melt inclusions in co-precipitated minerals: Quantification, data analysis and mineral/melt partitioning[J].Geochimica et Cosmochimica Acta, 2007, 71(4): 1021-1040. doi: 10.1016/j.gca.2006.11.001

[26]

Halter W E, Pettke T, Heinrich C A, et al. The Origin of Cu/Au ratios in porphyry-type ore deposits[J].Science, 2002, 296(5574): 1844-1846. doi: 10.1126/science.1070139

[27]

Hauri E. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions[J].Chemical Geology, 2002, 183(1-4): 115-141. doi: 10.1016/S0009-2541(01)00374-6

[28]

Guillong M, Pettke T. Depth dependent element ratios in fluid inclusion analysis by laser ablation ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2012, 27(3): 505-508. doi: 10.1039/c2ja10147e

[29]

Halter W E, Heinrich C A, Pettke T, et al. Laser-ablation ICP-MS analysis of silicate and sulfide melt inclusions in an andesitic complex Ⅱ: Evidence for magma mixing and magma chamber evolution[J].Contributions to Mineralogy and Petrology, 2004, 147(4): 397-412. doi: 10.1007/s00410-004-0563-5

[30]

Zajacz Z, Halter W E, Pettke T, , et al. Deter-mination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: Controls on element partitioning[J].Geochimica et Cosmochimica Acta, 2008, 72(8): 2169-2197. doi: 10.1016/j.gca.2008.01.034

[31]

Heinrich C A, Pettke T, Halter W E, , et al. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry[J].Geochimica et Cosmochimica Acta, 2003, 67(18): 3473-3497. doi: 10.1016/S0016-7037(03)00084-X

[32]

Liu Y, Hu Z, Yuan H, , et al. Volume-optional and low-memory (VOLM) chamber for laser ablation-ICP-MS: Application to fiber analyses[J].Journal of Analytical Atomic Spectrometry, 2007, 22(5): 582-585. doi: 10.1039/b701718a

[33]

Eggins S M, Kinsley L P J, Shelley J M G, et al. Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS[J].Applied Surface Science, 1998, 127-129: 278-286. doi: 10.1016/S0169-4332(97)00643-0

[34]

Russo R E, Mao X, Liu H, , et al. Laser ablation in analytical chemistry-A review[J].Talanta, 2002, 57(3): 425-451. doi: 10.1016/S0039-9140(02)00053-X

[35]

Jeffries T E, Pearce N J G, Perkins W T, , et al. Chemical fractionation during infrared and ultraviolet laser ablation inductively coupled plasma mass spectrometry-implications for mineral microanalysis[J].Analytical Communications, 1996, 33(1): 35-39. doi: 10.1039/AC9963300035

[36]

张春来, 刘勇胜, 高山, , 等. 四合屯玄武岩斑晶中单个熔体包裹体元素组成及其对岩浆演化的指示[J]. 地球化学, 2011, 40(2): 109-125.

[37]

Hu Z, Liu Y, Chen L, , et al. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution[J].Journal of Analytical Atomic Spectrometry, 2011, 26(2): 425-430. doi: 10.1039/C0JA00145G

[38]

Liu Y, Hu Z, Gao S, , et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004

[39]

胡明月, 何红蓼, 詹秀春, , 等. 基体归一定量技术在激光烧蚀-等离子体质谱法锆石原位多元素分析中的应用[J]. 分析化学, 2008, 36(7): 947-953.

[40]

de Hoog J C M, Mason P R D, van Bergen M J, et al. Sulfur and chalcophile elements in subduction zones: constraints from a laser ablation ICP-MS study of melt inclusions from Galunggung Volcano, Indonesia[J].Geochimica et Cosmochimica Acta, 2001, 65(18): 3147-3164. doi: 10.1016/S0016-7037(01)00634-2

[41]

Pettke T, Audétat A, Schaltegger U, , et al. Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia): Part Ⅱ: Evolving zircon and thorite trace element chemistry[J].Chemical Geology, 2005, 220(3-4): 191-213. doi: 10.1016/j.chemgeo.2005.02.017

[42]

Elburg M A, Kamenetsky V S, Foden J D, , et al. The origin of medium-K ankaramitic arc magmas from Lombok (Sunda Arc, Indonesia): Mineral and melt inclusion evidence[J].Chemical Geology, 2007, 240(3-4): 260-279. doi: 10.1016/j.chemgeo.2007.02.015

[43]

Guzmics T, Zajacz Z, Kodolányi J, , et al. LA-ICP-MS study of apatite- and K feldspar-hosted primary carbonatite melt inclusions in clinopyroxenite xenoliths from lamprophyres, Hungary: Implications for significance of carbonatite melts in the Earth′s mantle[J].Geochimica et Cosmochimica Acta, 2008, 72(7): 1864-1886. doi: 10.1016/j.gca.2008.01.024

[44]

Araújo D P, Griffin W L, O′Reilly S Y, et al. Mantle melts, metasomatism and diamond formation: Insights from melt inclusions in xenoliths from Diavik, Slave Craton[J].Lithos, 2009, 112(Supplement 2): 675-682.

[45]

Daví M, De Rosa R, Barca D, et al. A LA-ICP-MS study of minerals in the Rocche Rosse magmatic enclaves: Evidence of a mafic input triggering the latest silicic eruption of Lipari Island (Aeolian Arc, Italy)[J].Journal of Volcanology and Geothermal Research, 2009, 182(1-2): 45-56. doi: 10.1016/j.jvolgeores.2009.02.001

[46]

Zajacz Z, Hanley J J, Heinrich C A, , et al. Diffusive reequilibration of quartz-hosted silicate melt and fluid inclusions: Are all metal concentrations unmodified?[J].Geochimica et Cosmochimica Acta, 2009, 73(10): 3013-3027. doi: 10.1016/j.gca.2009.02.023

[47]

Marques A F A, Scott S D, Guillong M, et al. Magmatic degassing of ore-metals at the Menez Gwen: Input from the Azores plume into an active Mid-Atlantic Ridge seafloor hydrothermal system[J].Earth and Planetary Science Letters, 2011, 310(1-2): 145-160. doi: 10.1016/j.epsl.2011.07.021

[48]

Audétat A, Pettke T. The magmatic-hydrothermal evol-ution of two barren granites: A melt and fluid inclusion study of the Rito del Medio and Canada Pinabete plutons in northern New Mexico (USA)[J].Geochimica et Cosmochimica Acta, 2003, 67(1): 97-121. doi: 10.1016/S0016-7037(02)01049-9

[49]

Beaudoin Y, Scott S D, Gorton M P, , et al. Pb and other ore metals in modern seafloor tectonic environments: Evidence from melt inclusions[J].Marine Geology, 2007, 242(4): 271-289. doi: 10.1016/j.margeo.2007.04.004

[50]

Marchev P, Georgiev S, Zajacz Z, , et al. High-K ankaramitic melt inclusions and lavas in the Upper Cretaceous Eastern Srednogorie continental arc, Bulgaria: Implications for the genesis of arc shoshonites[J].Lithos, 2009, 113(1-2): 228-245. doi: 10.1016/j.lithos.2009.03.014

[51]

Roeder P L, Emslie R F. Olivine-liquid equilibrium[J].Contributions to Mineralogy and Petrology, 1970, 29(4): 275-289. doi: 10.1007/BF00371276

[52]

Grove T L, Baker M B. Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends[J].Journal of Geophysical Research, 1984, 89(B5): 3253-3274. doi: 10.1029/JB089iB05p03253

[53]

Kogiso T, Hirschmann M M, Frost D J, et al. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts[J].Earth and Planetary Science Letters, 2003, 216(4): 603-617. doi: 10.1016/S0012-821X(03)00538-7

[54]

Kogiso T, Hirschmann M M. Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions[J].Contributions to Mineralogy and Petrology, 2001, 142(3): 347-360. doi: 10.1007/s004100100295

[55]

Zajacz Z, Halter W. Copper transport by high temper-ature, sulfur-rich magmatic vapor: Evidence from silicate melt and vapor inclusions in a basaltic andesite from the Villarrica volcano (Chile)[J].Earth and Planetary Science Letters, 2009, 282(1-4): 115-121. doi: 10.1016/j.epsl.2009.03.006

[56]

Dsnyushevsky L V, Sokolov S, Falloon T J, et al. Melt inclusions in olivine phenocrysts: Using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks[J].Journal of Petrology, 2002, 43(9): 1651-1671. doi: 10.1093/petrology/43.9.1651

[57]

Lassiter J C, Hauri E H, Nikogosian I K, , et al. Chlorine-potassium variations in melt inclusions from Raivavae and Rapa, Austral Islands: Constraints on chlorine recycling in the mantle and evidence for brine-induced melting of oceanic crust[J].Earth and Planetary Science Letters, 2002, 202(3-4): 525-540. doi: 10.1016/S0012-821X(02)00826-9

[58]

Seo J H, Guillong M, Aerts M, , et al. Microanalysis of S, Cl, and Br in fluid inclusions by LA-ICP-MS[J].Chemical Geology, 2011, 284(1-2): 35-44.

[59]

Ren Z Y, Ingle S, Takahashi E, , et al. The chemical structure of the Hawaiian mantle plume[J].Nature, 2005, 436(7052): 837-840. doi: 10.1038/nature03907

[60]

Gunn B M, Coy-Yll R, Watkins N D, , et al. Geochemistry of an oceanite-ankaramite-basalt suite from East Island, Crozet Archipelago[J].Contributions to Mineralogy and Petrology, 1970, 28(4): 319-339. doi: 10.1007/BF00388954

[61]

Schiano P, Eiler J, Hutcheon I, , et al. Primitive CaO-rich, silica-undersaturated melts in island arcs: Evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc magmas[J].Geochemistry, Geophysics, Geosystems, 2000, 1(5): 1999GC000032.

[62]

Danyushevsky L V, Leslie R A J, Crawford A J, , et al. Melt inclusions in primitive olivine phenocrysts: The role of localized reaction processes in the origin of anomalous compositions[J].Journal of Petrology, 2004, 45(12): 2531-2553. doi: 10.1093/petrology/egh080

[63]

Reed M J, Candela P A, Piccoli P M, et al. The distribution of rare earth elements between monzogranitic melt and the aqueous volatile phase in experimental investigations at 800℃ and 200 MPa[J].Contributions to Mineralogy and Petrology, 2000, 140(2): 251-262. doi: 10.1007/s004100000182

[64]

Gao S, Rudnick R L, Xu W-L, , et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton[J].Earth and Planetary Science Letters, 2008, 270(1-2): 41-53. doi: 10.1016/j.epsl.2008.03.008

[65]

Burnham C W, Ohmoto H. Late-stage processes of felsic magma[J].Mining Geology, 1980, 8(Special Issue): 1-11.

[66]

Hattori K. High-sulfur magma, a product of fluid dis-charge from underlying mafic magma: Evidence from Mount Pinatubo, Philippines[J].Geology, 1993, 21(12): 1083-1086. doi: 10.1130/0091-7613(1993)021<1083:HSMAPO>2.3.CO;2

[67]

Hattori K, Sato H. Magma evolution recorded in plagio-clase zoning in 1991 Pinatubo eruption products[J].American Mineralogist, 1996, 81(7): 982-994.

[68]

Hattori K H, Keith J D. Contribution of mafic melt to porphyry copper mineralization: Evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA[J].Mineralium Deposita, 2001, 36(8): 799-806. doi: 10.1007/s001260100209

[69]

孙艺, 赖勇, 陈静, , 等. 岩浆残余富集和流体叠加对稀土配分的影响: 熔融包裹体原位LA-ICP-MS研究[J]. 矿物学报, 2011, (Z1): 291-292.

[70]

Glaus R, Kaegi R, Krumeich F, , et al. Pheno-menological studies on structure and elemental composition of nanosecond and femtosecond laser-generated aerosols with implications on laser ablation inductively coupled plasma mass spectrometry[J].Spectrochimica Acta Part B: Atomic Spectroscopy, 2010, 65(9-10): 812-822. doi: 10.1016/j.sab.2010.07.005

[71]

Paul B, Woodhead J D, Hergt J, , et al. Melt inclusion Pb-isotope analysis by LA-MC-ICPMS: Assessment of analytical performance and application to OIB genesis[J].Chemical Geology, 2011, 289(3-4): 210-223. doi: 10.1016/j.chemgeo.2011.08.005

[72]

Martin A J, Gehrels G E, DeCelles P G, et al. The tectonic significance of (U,Th)/Pb ages of monazite inclusions in garnet from the Himalaya of central Nepal[J].Chemical Geology, 2007, 244(1-2): 1-24. doi: 10.1016/j.chemgeo.2007.05.003

相似文献(共19条)

[1]

张志坚, 何谋春. 显微激光拉曼光谱在矿床学中的应用. 岩矿测试, 2001, (1): 43-47.

[2]

李芳, 刘艳荣, 吕新彪. 红外显微镜在地质学的应用与前景. 岩矿测试, 2006, 25(4): 355-359.

[3]

张乐, 任钟元, 钱生平, 丁相礼, 吴亚东. LA-MC-ICPMS分析古老熔体包裹体Pb同位素组成中的误差评价. 岩矿测试, 2015, 34(4): 399-407. doi: 10.15898/j.cnki.11-2131/td.2015.04.004

[4]

闫巧娟, 魏小燕, 叶美芳, 赵慧博, 周宁超. 激光剥蚀电感耦合等离子体质谱-电子探针分析白山堂铜矿中的黄铁矿成分. 岩矿测试, 2016, 35(6): 658-666. doi: 10.15898/j.cnki.11-2131/td.2016.06.012

[5]

范晨子, 胡明月, 赵令浩, 孙冬阳, 蒯丽君, 蔡炳贵, 詹秀春. 激光剥蚀电感耦合等离子体质谱分析石笋样品中多元素比值及45种元素含量. 岩矿测试, 2013, 32(3): 383-391.

[6]

李凤春, 侯明兰, 栾日坚, 林培军, 李增胜, 赵龙, 王继林, 徐爽. 电感耦合等离子体质谱仪与激光器联用测量条件优化及其在锆石U-Pb定年中的应用. 岩矿测试, 2016, 35(1): 17-23. doi: 10.15898/j.cnki.11-2131/td.2016.01.004

[7]

周亮亮, 魏均启, 王芳, 仇秀梅. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用. 岩矿测试, 2017, 36(4): 350-359. doi: 10.15898/j.cnki.11-2131/td.201701160007

[8]

吴石头, 王亚平, 詹秀春, AndreasKronz, KlausSimon, 许春雪, 田欢. CGSG系列标准物质元素分馏效应及主量微量元素单元内均匀性探究. 岩矿测试, 2016, 35(6): 612-620. doi: 10.15898/j.cnki.11-2131/td.2016.06.007

[9]

段凯波, 王登红, 何汉江, 郑国栋, 熊先孝, 袁建国, 贺宝宝, 屈云燕. 应用电感耦合等离子体质谱/光谱法研究上扬子区新华磷块岩稀土元素特征及沉积学意义. 岩矿测试, 2015, 34(2): 261-267. doi: 10.15898/j.cnki.11-2131/td.2015.02.018

[10]

鲁麟, 梁婷, 陈郑辉, 王勇, 黑欢, 谢星. 利用X射线粉晶衍射和电感耦合等离子体质谱法研究江西西华山钨矿床中黑钨矿的矿物学特征及指示意义. 岩矿测试, 2015, 34(1): 150-160. doi: 10.15898/j.cnki.11-2131/td.2015.01.019

[11]

刘江斌, 刘建军, 赵继宏, 马旻, 冯春红, 黄兴华. 电感耦合等离子体原子发射全谱直读光谱仪测定地质样品中的钽. 岩矿测试, 2005, (2): 151-153.

[12]

郑国栋, 李建康, 陈振宇, 陈郑辉, 侯可军, 赵芝. 赣南吉埠黄沙岩体的锆石铀-铅年代学研究及其地质意义. 岩矿测试, 2012, 31(4): 711-716.

[13]

郭娜欣, 赵正, 陈振宇, 陈毓川, 侯可军, 王少轶. 赣南鹅婆岩体的年代学和岩石地球化学特征及其地质意义. 岩矿测试, 2014, 33(4): 589-597.

[14]

. 中国地质学会岩矿测试专业委员会等离子体光谱分析经验交流会资料摘要选登. 岩矿测试, 1982, (2): 75-79.

[15]

范晨子, 胡明月, 赵令浩, 孙冬阳, 詹秀春. 锆石铀-铅定年激光剥蚀-电感耦合等离子体质谱原位微区分析进展. 岩矿测试, 2012, 31(1): 29-46.

[16]

孙冬阳, 王广, 范晨子, 赵令浩, 胡明月, 樊兴涛, 袁继海, 詹秀春. 激光剥蚀-电感耦合等离子体质谱线扫描技术的空间分辨率研究. 岩矿测试, 2012, 31(1): 127-131.

[17]

肖志斌, 柳小明, 李正辉, 张红. 激光剥蚀-电感耦合等离子体质谱准确测定锆石中钛的含量. 岩矿测试, 2012, 31(2): 229-233.

[18]

吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展. 岩矿测试, 2015, 34(5): 503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002

[19]

刘先国, 方金东. 电感耦合等离子体发射光谱法直接测定地质试样中铀. 岩矿测试, 1997, (4): 296-298302.

计量
  • PDF下载量(4)
  • 文章访问量(99)
  • HTML全文浏览量(51)
  • 被引次数(0)
目录

Figures And Tables

单个熔体包裹体激光剥蚀电感耦合等离子体质谱分析及地质学应用

赵令浩, 詹秀春, 胡明月, 范晨子, 孙冬阳, 刘传宝