【引用本文】 刘唯一, 陈勇, 王淼, 等. 盐类对甲烷水合物稳定性影响研究进展[J]. 岩矿测试, 2018, 37(2): 111-120. doi: 10.15898/j.cnki.11-2131/td.201706110098
LIU Wei-yi, CHEN Yong, WANG Miao, et al. Research Progress on the Effect of Salts on the Stability of Methane Hydrate[J]. Rock and Mineral Analysis, 2018, 37(2): 111-120. doi: 10.15898/j.cnki.11-2131/td.201706110098

盐类对甲烷水合物稳定性影响研究进展

1. 

中国石油大学(华东)地球科学与技术学院, 山东 青岛 266580

2. 

青岛海洋科学与技术国家实验室, 海洋矿产资源评价与探测技术功能实验室, 山东 青岛 266071

收稿日期: 2017-06-11  修回日期: 2018-02-09  接受日期: 2018-03-21

基金项目: 国家自然科学基金资助项目(U1762108);中央高校基本科研业务费专项资金(SD2013211151,16CX05005A)

作者简介: 刘唯一, 硕士研究生, 地质工程专业。E-mail:2268335086@qq.com

通讯作者: 陈勇, 教授, 主要从事盆地流体分析和油气地球化学研究工作。E-mail:yongchenzy@upc.edu.cn

Research Progress on the Effect of Salts on the Stability of Methane Hydrate

1. 

School of Geosciences, China University of Petroleum, Qingdao 266580, China

2. 

Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China

Corresponding author: CHEN Yong, yongchenzy@upc.edu.cn

Received Date: 2017-06-11
Revised Date: 2018-02-09
Accepted Date: 2018-03-21

摘要:甲烷水合物稳定性主要控制着甲烷水合物稳定带的厚度,温度、压力、孔隙水盐度和气体组分等因素影响着水合物稳定带的厚度。甲烷水合物的形成与地层水关系密切,而地层水中的各种盐离子(Cl-、Na+、Mg2+、SO42-、Ca2+)以及过渡金属(Fe、Mn、Cu、Co、Ni等)会影响天然气水合物的形成和分解条件。因此,研究盐类对甲烷水合物的稳定性认识有助于更加深入了解天然气水合物的成藏条件。本文分析了氯化物、硫酸盐、碳酸盐三大盐类对甲烷水合物稳定性的影响:同一盐类不同盐度条件下,随着盐度的增加,甲烷水合物相平衡曲线向低温高压偏移。总结了不同盐类和阴阳离子对甲烷水合物的抑制作用大小:在相同浓度、不同盐类条件下,盐类浓度在1.0~1.5 mol/L时盐类对甲烷水合物的抑制作用大小为MgCl2 > CaCl2 > NaCl > KCl,盐类浓度大于1.5 mol/L时CaCl2的抑制作用较强;阴离子对甲烷水合物的抑制作用大小争议较大,阳离子中Mg2+对甲烷水合物的抑制作用最强。从目前的研究成果来看,已有数据与实际地质条件还存在一定差距,需要在真实实验条件下加强氯化物-硫酸盐-碳酸盐-甲烷-水体系的详细研究。本文提出,将高压可视反应腔与显微激光拉曼技术相结合,有望准确获取天然气水合物稳定形成时的温压条件,明确盐类和阴阳离子的抑制作用大小,以及盐类和离子特性如何影响水合物的形成和稳定,以便为未来的水合物勘探开发提供参考。

关键词: 盐类, 甲烷水合物, 相平衡, 稳定性

要点

(1) 系统总结了氯化物、硫酸盐、碳酸盐对甲烷水合物稳定性的影响和研究甲烷水合物相平衡的方法。

(2) 对比了同一浓度氯化物、硫酸盐、碳酸盐和阴阳离子对甲烷水合物的抑制作用大小。

(3) 提出了未来开展实验研究应当与实际地层情况结合,开展更加系统的研究。

Research Progress on the Effect of Salts on the Stability of Methane Hydrate

KEY WORDS: salts, methane hydrate, phase equilibrium, stability

HIGHLIGHTS

(1) The effects of chloride, sulfate and carbonate on the stability of methane hydrate and the methods of studying the phase equilibrium of methane hydrate were systematically summarized.

(2) The inhibition effect of the same concentration of chloride, sulfate, carbonate and anion and cation on methane hydrate was compared.

(3) It was proposed that future experimental research should be combined with the actual formation conditions to carry out a more systematic study.

本文参考文献

[1] Sloan Jr E D,Koh C. Clathrate Hydrates of Natural Gases (The Third Edition)[M] . New York: CRC Press, 2007: 1-2.
[2]

Udachin K A, Ripmeester J A. A complex clathrate hydrate structure showing bimodal guest hydration[J].Nature, 1999, 397: 420-423. doi: 10.1038/17097

[3] Sloan Jr E D,Koh C. Clathrate Hydrates of Natural Gases (The Second Edition)[M] . New York: CRC Press, 1998: 223-224.
[4]

Kvenvolden K A, Lorenson T D. The global occurrence of natural gas hydrates[J]. American Geophysical Union, 2001, 124: 3-18.

[5]

Milkov A V. Global estimates of hydrate-bound gas in marine sediments:How much is really out there?[J]. Earth-Science Reviews, 2004, 66(3): 183-197.

[6]

Song Y, Yang L, Zhao J, et al. The status of natural gas hydrate research in China:A review[J].Renewable and Sustainable Energy Reviews, 2014, 31: 778-791. doi: 10.1016/j.rser.2013.12.025

[7]

何勇, 苏正, 吴能友, 等. 海底天然气水合物稳定带厚度的影响因素[J]. 海洋地质前沿, 2012, 28(5): 43-47.

He Y, Su Z, Wu N Y, et al. Factors influencing the thickness of gas hydrate stability zone in marine sediments[J]. Marine Geology Frontiers, 2012, 28(5): 43-47.

[8]

Sun C Y, Li W Z, Yang X, et al. Progress in research of gas hydrate[J].Chinese Journal of Chemical Engineering, 2011, 19(1): 151-162. doi: 10.1016/S1004-9541(09)60192-0

[9]

宋海斌, 耿建华, WangHow-Kin, 等. 南海北部东沙海域天然气水合物的初步研究[J]. 地球物理学报, 2001, 44(5): 687-695.

Song H B, Geng J H, Wang H K, et al. A preliminary study of gas hydrates in Dongsha region north of South China Sea[J]. Chinese Journal of Geophysics, 2001, 44(5): 687-695.

[10]

Lu S M. A global survey of gas hydrate development and reserves:Specifically in the marine field[J]. Renewable and Sustainable Energy Reviews, 2015, 41(C): 884-900.

[11]

Nisbet E G, Piper D J W. Giant submarine landslides[J].Nature, 1998, 392(6674): 329-330. doi: 10.1038/32765

[12]

Bains S, Corfield R M, Norris R D, et al. Mechanisms of climate warming at the end of the Paleocene[J].Science, 1999, 285(5428): 724-727. doi: 10.1126/science.285.5428.724

[13]

Matsumoto R, Uchida T, Waseda A, et al. Occurrence, Structure and Composition of Natural Gas Hydrate Recovered from the Blake Ridge, Northwest Atlantic[R]. Proceedings of Ocean Drill Program Science Results, 2000: 13-28.

[14]

Kvenvolden K A, Lorenson T D. The Global Occurrence of Natural Gas Hydrate[R]//Natural Gas Hydrates: Occurrence, Distribution, and Detection[J]. 2001: 3-18.

[15]

金春爽, 汪集旸, 张光学, 等. 南海天然气水合物稳定带的影响因素[J]. 矿床地质, 2005, 24(4): 388-397.

Jin C S, Wang J Y, Zhang G X, et al. Factors affecting natural gas hydrate stability zone in the South China Sea[J].Mineral Deposits, 2005, 24(4): 388-397.

[16]

王宏斌, 梁劲, 龚跃华, 等. 基于天然气水合物地震数据计算南海北部陆坡海底热流[J]. 现代地质, 2005, 19(1): 67-73.

Wang H B, Liang J, Gong Y H, et al. Estimation of the heat flow in the northern of the South China Sea based on the seismic data of gas hydrate[J]. Geoscience, 2005, 19(1): 67-73.

[17]

张金华, 魏伟, 张吝文, 等. 海底天然气水合物相平衡及稳定带的影响分析[J]. 化学工程与装备, 2011, (1): 39-42.

Zhang J H, Wei W, Zhang L W, et al. Analysis of phase equilibrium and stability zone of gas hydrate in submarine[J]. Chemical Engineering & Equipment, 2011, (1): 39-42.

[18] Booth J S,Winters W J,Dillon W P. Major Occurrences and Reservoir Concepts of Marine Clathrate Hydrates:Implications of Field Evidence[M] . London: Woods Hole Coastal and Marine Science Center, 1998: 113-127.
[19]

许威, 邱楠生, 孙长宇, 等. 不同因素对天然气水合物稳定带厚度的影响[J]. 天然气地球科学, 2010, 21(3): 528-534.

Xu W, Qiu N S, Sun C Y, et al. Different factors on the thickness of gas hydrate stability zone[J]. Natural Gas Geoscience, 2010, 21(3): 528-534.

[20]

Milkov A V, Sassen R. Thickness of the gas hydrate stability zone, Gulf of Mexico continental slope[J].Marine and Petroleum Geology, 2000, 17(9): 981-991. doi: 10.1016/S0264-8172(00)00051-9

[21]

Milkov A V, Sassen R. Economic geology of offshore gas hydrate accumulations and provinces[J]. Marine & Petroleum Geology, 2002, 19(1): 1-11.

[22]

杨顶辉, XuWenyue. 盐度对甲烷气水合物系统的影响[J]. 中国科学(D辑), 2007, 37(10): 1370-1381.

Yang D H, Xu W Y. Effects of salinity on methane hydrate system[J]. Scientia Sinica (Terrae), 2007, 37(10): 1370-1381.

[23]

Handa Y P. Effect of hydrostatic pressure and salinity on the stability of gas hydrates[J].Journal of Physical Chemistry, 1990, 94: 2652-2657. doi: 10.1021/j100369a077

[24]

Sylva T Y, Kinoshita C K, Masutani S M, et al. Inhibiting effects of transition metal salts on methane hydrate stability[J].Chemical Engineering Science, 2016, 155: 10-15. doi: 10.1016/j.ces.2016.06.028

[25]

Sun S C, Kong Y Y, Zhang Y, et al. Phase equilibrium of methane hydrate in silica sand containing chloride salt solution[J].The Journal of Chemical Thermodynamics, 2015, 90: 116-121. doi: 10.1016/j.jct.2015.06.030

[26]

Villard M. Sur les hydrates de méthane et d'éthylène[J].Comptes Rendus, 1888, 107: 257.

[27]

Deaton W M, Frost Jr E M. Gas Hydrates and Their Relation to the Operation of Natural-gas Pipe Lines[R]. Bureau of Mines, Amarillo, TX (USA): Helium Research Center, 1946.

[28]

de Roo J L, Peters C J, Lichtenthaler R N, et al. Occurrence of methane hydrate in saturated and unsaturated solutions of sodium chloride and water in dependence of temperature and pressure[J].AIChE Journal, 1983, 29(4): 651-657. doi: 10.1002/(ISSN)1547-5905

[29]

Millero F J, Feistel R, Wright D G, et al. The com-position of standard seawater and the definition of the reference-composition salinity scale[J].Deep Sea Research Part Ⅰ:Oceanographic Research Papers, 2008, 55(1): 50-72. doi: 10.1016/j.dsr.2007.10.001

[30]

Aparicio-González A, Duarte C M, Tovar-Sánchez A, et al. Trace metals in deep ocean waters:A review[J]. Journal of Marine Systems, 2012, 100: 26-33.

[31]

Ross M J, Toczylkin L S. Hydrate dissociation pressures for methane or ethane in the presence of aqueous solutions of triethylene glycol[J].Journal of Chemical and Engineering Data, 1992, 37(4): 488-491. doi: 10.1021/je00008a026

[32]

Kang S P, Chun M K, Lee H, et al. Phase equilibria of methane and carbon dioxide hydrates in the aqueous MgCl2 solutions[J]. Fluid Phase Equilibria, 1998, 147(1): 229-238.

[33]

Jager M D, Sloan E D. The effect of pressure on methane hydration in pure water and sodium chloride solutions[J]. Fluid Phase Equilibria, 2001, 185(1): 89-99.

[34]

van der Waals J H, Platteeuw J C. Clathrate Solutions[M]//Prigogine Ⅰ: Advances in Chemical Physics Ⅱ. New York, 1959.

[35]

Duan Z, Li D, Chen Y, et al. The influence of temper-ature, pressure, salinity and capillary force on the formation of methane hydrate[J].Geoscience Frontiers, 2011, 2(2): 125-135. doi: 10.1016/j.gsf.2011.03.009

[36]

Tishchenko P, Hensen C, Wallmann K, et al. Calculation of the stability and solubility of methane hydrate in seawater[J]. Chemical Geology, 2005, 219(1): 37-52.

[37]

Chin H Y, Lee B S, Chen Y P, et al. Prediction of phase equilibrium of methane hydrates in the presence of ionic liquids[J]. Industrial & Engineering Chemistry Research, 2013, 52(47): 16985-16992.

[38]

Parrish W R, Prausnitz J M. Dissociation pressures of gas hydrates formed by gas mixtures[J]. Industrial & Engineering Chemistry Process Design and Development, 1972, 11(1): 26-35.

[39]

Rashid S, Fayazi A, Harimi B, et al. Evolving a robust approach for accurate prediction of methane hydrate formation temperature in the presence of salt inhibitor[J]. Journal of Natural Gas Science & Engineering, 2014, 18(2): 194-204.

[40]

Ng H J, Robinson D B. Hydrate formation in systems containing methane, ethane, propane, carbon dioxide or hydrogen sulfide in the presence of methanol[J].Fluid Phase Equilibria, 1985, 21(1-2): 145-155. doi: 10.1016/0378-3812(85)90065-2

[41]

Lee S Y, Holder G D. Model for gas hydrate equilibria using a variable reference chemical potential:Part 1[J].AIChE Journal, 2002, 48(1): 161-167. doi: 10.1002/(ISSN)1547-5905

[42]

Englezos P, Bishnoi P R. Prediction of gas hydrate formation conditions in aqueous electrolyte solutions[J].AIChE Journal, 1988, 34(10): 1718-1721. doi: 10.1002/(ISSN)1547-5905

[43]

Shabani M M, Rashtchian D, Ghotbi C, et al. Prediction of hydrate formation for the systems containing single and mixed electrolyte solutions[J]. Iranian Journal of Chemistry and Chemical Engineering, 2007, 26(1): 35-45.

[44]

Javanmardi J, Moshfeghian M, Maddox R N, et al. Simple method for predicting gas-hydrate-forming conditions in aqueous mixed-electrolyte solutions[J]. Energy & Fuels, 1998, 12(2): 219-222.

[45]

Javanmardi J, Moshfeghian M. A new approach for prediction of gas hydrate formation conditions in aqueous electrolyte solutions[J].Fluid Phase Equilibria, 2000, 168(2): 135-148. doi: 10.1016/S0378-3812(99)00322-2

[46]

孙长宇, 黄强, 陈光进, 等. 气体水合物形成的热力学与动力学研究进展[J]. 化工学报, 2006, 57(5): 1031-1039.

Sun C Y, Huang Q, Chen G J, et al. Progress of thermodynamics and kinetics of gas hydrate formation[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(5): 1031-1039.

[47]

Palermo T, Arla D, Borregales M, et al. Study of the Agglomeration between Hydrate Particles in Oil Using Differential Scanning Calorimetry (DSC)[C]//Proceedings of the Fifth International Conference on Gas Hydrates. 2005: 12-16.

[48]

Dalmazzone D, Hamed N, Dalmazzone C, et al. DSC measure-ments and modelling of the kinetics of methane hydrate formation in water-in-oil emulsion[J].Chemical Engineering Science, 2009, 64(9): 2020-2026. doi: 10.1016/j.ces.2009.01.028

[49]

Thatai S, Khurana P, Prasad S, et al. Plasmonic detection of Cd2+ ions using surface-enhanced Raman scattering active core-shell nanocomposite[J].Talanta, 2015, 134: 568-575. doi: 10.1016/j.talanta.2014.11.024

[50]

Bonales L J, Muñoz-Iglesias V, Santamaría-Pérez D, et al. Quantitative Raman spectroscopy as a tool to study the kinetics and formation mechanism of carbonates[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2013, 116: 26-30. doi: 10.1016/j.saa.2013.06.121

[51]

Sum A K, Burruss R C, Sloan E D, et al. Measurement of clathrate hydrates via Raman spectroscopy[J].The Journal of Physical Chemistry B, 1997, 101(38): 7371-7377. doi: 10.1021/jp970768e

[52]

Subramanian S, Sloan Jr E D. Molecular measurements of methane hydrate formation[J].Fluid Phase Equilibria, 1999, 158-160: 813-820. doi: 10.1016/S0378-3812(99)00134-X

[53]

Chazallon B, Focsa C, Charlou J L, et al. A comparative Raman spectroscopic study of natural gas hydrates collected at different geological sites[J]. Chemical Geology, 2007, 244(1): 175-185.

[54]

Uchida A, Jagendorf A T, Hibino T, et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J].Plant Science, 2002, 163(3): 515-523. doi: 10.1016/S0168-9452(02)00159-0

[55]

陈勇, 周瑶琪. 天然流体包裹体中甲烷水合物生成条件原位变温拉曼光谱研究[J]. 光谱学与光谱分析, 2007, 27(8): 1547-1550.

Chen Y, Zhou Y Q. In situ temperature-dependent Raman spectroscopic on methane hydrate formation in natural fluid inclusion[J]. Spectroscopy and Spectral Analysis, 2007, 27(8): 1547-1550.

[56]

吕万军, I-MingChou, RobertC.Burruss, 等. 拉曼光谱原位观测水合物形成后的饱和甲烷浓度[J]. 地球化学, 2005, 34(2): 187-192.

Lü W J, Chou I M, Burruss R C, et al. In situ observation of variation of methane concentration in water during the growth of hydrate using Raman spectroscopy[J]. Geochemica, 2005, 34(2): 187-192.

[57]

Hesse R. Pore-water anomalies in gas hydrate-bearing sediments of the deeper continental margins:Facts and problems[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1990, 8(1): 117-138.

[58]

马燕. 盐溶液体系中天然气水合物稳定性的研究[D]. 淄博: 山东理工大学, 2011.

Ma Y. Study on the Stability of Natural Gas Hydrates in the Salt Solution System[D]. Zibo: Shandong University of Technology, 2011.

[59]

Maekawa T. Equilibrium conditions for gas hydrates of methane and ethane mixtures in pure water and sodium chloride solution[J].Geochemical Journal, 2001, 35(1): 59-66. doi: 10.2343/geochemj.35.59

[60]

Lu H, Matsumoto R. Experimental studies on the possible influences of composition changes of pore water on the stability conditions of methane hydrate in marine sediments[J]. Marine Chemistry, 2005, 93(2): 149-157.

[61]

Kharrat M, Dalmazzone D. Experimental determination of stability conditions of methane hydrate in aqueous calcium chloride solutions using high pressure differential scanning calorimetry[J].The Journal of Chemical Thermodynamics, 2003, 35(9): 1489-1505. doi: 10.1016/S0021-9614(03)00121-6

[62]

Atik Z, Windmeier C, Oellrich L R, et al. Experimental gas hydrate dissociation pressures for pure methane in aqueous solutions of MgCl2 and CaCl2 and for a (methane+ethane) gas mixture in an aqueous solution of (NaCl+MgCl2)[J]. Journal of Chemical & Engineering Data, 2006, 51(5): 1862-1867.

[63]

Mohammadi A H, Afzal W, Richon D, et al. Gas hydrates of methane, ethane, propane, and carbon dioxide in the presence of single NaCl, KCl, and CaCl2 aqueous solutions:Experimental measurements and predictions of dissociation conditions[J].The Journal of Chemical Thermodynamics, 2008, 40(12): 1693-1697. doi: 10.1016/j.jct.2008.06.015

[64]

Mohammadi A H, Kraouti I, Richon D, et al. Methane hydrate phase equilibrium in the presence of NaBr, KBr, CaBr2, K2CO3, and MgCl2 aqueous solutions:Experimental measurements and predictions of dissociation conditions[J].The Journal of Chemical Thermodynamics, 2009, 41(6): 779-782. doi: 10.1016/j.jct.2009.01.004

[65]

Lu H, Matsumoto R, Tsuji Y, et al. Anion plays a more important role than cation in affecting gas hydrate stability in electrolyte solution?-A recognition from experimental results[J]. Fluid Phase Equilibria, 2001, 178(1): 225-232.

[66]

宋永臣, 杨明军, 刘瑜, 等. 离子对甲烷水合物相平衡的影响[J]. 化工学报, 2009, (6): 1362-1366.

Song Y C, Yang M J, Liu Y, et al. Influence of ions on phase equilibrium of methane hydrate[J]. Journal of Chemical Industry and Engineering, 2009, (6): 1362-1366.

[67] Berecz E,Balla-Achs M. Gas Hydrates[M] . New York: Elsevier Science Publishing Company, 1983
[68]

Liu C L, Ye Y G, Sun S C, et al. Experimental studies on the P-T stability conditions and influencing factors of gas hydrate in different systems[J].Science China (Earth Sciences), 2013, 56(4): 594-600. doi: 10.1007/s11430-012-4564-3

[69]

Dholabhai P D, Englezos P, Kalogerakis N, et al. Equilibrium conditions for methane hydrate formation in aqueous mixed electrolyte solutions[J].The Canadian Journal of Chemical Engineering, 1991, 69(3): 800-805. doi: 10.1002/cjce.v69:3

[70]

刘伟, 金翔龙, 初凤友, 等. 海底天然气水合物相平衡的影响因素[J]. 海洋地质前沿, 2011, 27(5): 16-23.

Liu W, Jin X L, Chu F Y, et al. Research on influencing factors of gas hydrate phase equilibrium in marine sediments[J]. Marine Geology Frontiers, 2011, 27(5): 16-23.

[71]

Pieroen A P. Gas hydrates-approximate relations between heat of formation, composition and equilibrium temperature lowering by "inhibitors"[J]. Recueil des Travaux Chimiques des Pays-Bas, 1955, 74(8): 995-1002.

[72]

Dickens G R, Quinby-Hunt M S. Methane hydrate stability in pore water:A simple theoretical approach for geophysical applications[J].Journal of Geophysical Research:Solid Earth, 1997, 102(B1): 773-783. doi: 10.1029/96JB02941

[73]

黄子卿. 电解质溶液理论导论[M] . 北京: 科学出版社, 1983: 49-51.

Huang Z Q. Introduction of Theoretical Electrolyte Solution[M] . Beijing: Science Press, 1983: 49-51.
[74]

Sabil K M, Duarte A R C, Zevenbergen J, et al. Kinetic of formation for single carbon dioxide and mixed carbon dioxide and tetrahydrofuran hydrates in water and sodium chloride aqueous solution[J].International Journal of Greenhouse Gas Control, 2010, 4(5): 798-805. doi: 10.1016/j.ijggc.2010.05.010

相似文献(共20条)

[1]

奥地利安东帕有限公司. 密闭微波消解-ICPOES法测定钢铁样品中硅. 岩矿测试, 2008, 27(2): I-I.

[2]

任宏波, 刘昌岭, 陈敏, 林学辉, 张媛媛, 邓兴波. 甲烷水合物生成过程中海水常量离子浓度的变化规律. 岩矿测试, 2013, 32(2): 278-283.

[3]

杜钰娉, 张汉萍, 李海萍, 董薇, 刘文华. 地下水中高锰酸盐指数和硝酸根铵根稳定性研究. 岩矿测试, 2014, 33(3): 424-430.

[4]

白亚之, 朱爱美, 崔菁菁, 施美娟, 高晶晶, 张俊. 中国近海沉积物氮和有机碳标准物质的研制. 岩矿测试, 2014, 33(1): 74-80.

[5]

田苗, 孟庆国, 刘昌岭, 李承峰, 胡高伟, 冯娟, 赵全升. 天然气水合物粉晶X射线衍射测试参数优化及分析方法. 岩矿测试, 2017, 36(5): 481-488. doi: 10.15898/j.cnki.11-2131/td.201703160033

[6]

谷云秋, 李庆祥. 硫铁矿石标准物质研制中有关问题的探讨. 岩矿测试, 1992, (3): 256-259.

[7]

刘瑱, 马玲, 时晓露, 查立新. 石英岩化学成分分析标准物质研制. 岩矿测试, 2014, 33(6): 849-856.

[8]

洪飞, 刘耀华, 吕振生, 赵伟, 王卿, 张英明. 钛铁矿化学成分标准物质研制. 岩矿测试, 2014, 33(1): 63-73.

[9]

曾美云, 刘金, 邵鑫, 邹棣华. 磷矿石化学成分分析标准物质研制. 岩矿测试, 2017, 36(6): 633-640. doi: 10.15898/j.cnki.11-2131/td.201705170082

[10]

刘妹, 顾铁新, 程志中, 黄宏库, 鄢卫东, 鄢明才. 煤炭标准物质研制. 岩矿测试, 2010, 29(4): 414-418.

[11]

刘玉龙, 夏凡, 张洪志. 挥发性有机污染物标准物质使用的短期稳定性评价. 岩矿测试, 2012, 31(4): 647-652.

[12]

刘幼宏, 董骥. 石墨热稳定性分析. 岩矿测试, 1995, (3): 220-223.

[13]

关惠平, 熊俊楠, 陶双江, 吉随旺. 近水平岩层隧道围岩变形监测及其稳定性分析. 岩矿测试, 2008, 27(5): 357-362.

[14]

陈强, 刁少波, 孙建业, 刘昌岭, 业渝光. 热脉冲探针-时域反射技术测量含水合物沉积物的热导率及水合物饱和度. 岩矿测试, 2013, 32(1): 108-113.

[15]

戴莺, 史世云, 朱玉伦. 铌钽酸盐类矿物微量化学分析. 岩矿测试, 1985, (1): 67-70.

[16]

程思海, , 张欣. 天然气水合物专题研讨会简介. 岩矿测试, 2001, (4): 297-298300.

[17]

刁少波, 刘昌岭, 张剑, 业渝光. 海洋天然气水合物的模拟实验研究现状. 岩矿测试, 2004, (3): 201-206211.

[18]

张剑, 胡高伟, 刁少波, 陈强, 岳英杰, 业渝光. 多孔介质中水合物的热物理参数测量. 岩矿测试, 2008, 27(3): 165-168.

[19]

夏宁, 刘昌岭, 业渝光, 孟庆国, 林学辉, 贺行良. 显微激光拉曼光谱测定天然气水合物的方法研究. 岩矿测试, 2011, 30(4): 416-422.

[20]

刘昌岭, 孟庆国. X射线衍射法在天然气水合物研究中的应用. 岩矿测试, 2014, 33(4): 468-479.

计量
  • PDF下载量(61)
  • 文章访问量(386)
  • HTML全文浏览量(125)
  • 被引次数(0)
目录

Figures And Tables

盐类对甲烷水合物稳定性影响研究进展

刘唯一, 陈勇, 王淼, 张韩静