【引用本文】 周曙光, 廖世斌, 周可法, 等. 便携式X射线荧光光谱仪在岩石样品分析中的应用研究[J]. 岩矿测试, 2018, 37(1): 56-63. doi: 10.15898/j.cnki.11-2131/td.201704110051
ZHOU Shu-guang, LIAO Shi-bin, ZHOU Ke-fa, et al. Application of Portable X-ray Fluorescence Spectrometer in the Analysis of Rock Samples[J]. Rock and Mineral Analysis, 2018, 37(1): 56-63. doi: 10.15898/j.cnki.11-2131/td.201704110051

便携式X射线荧光光谱仪在岩石样品分析中的应用研究

1. 

中国科学院新疆生态与地理研究所, 新疆 乌鲁木齐 830011

2. 

新疆矿产资源与数字地质实验室, 新疆 乌鲁木齐 830011

收稿日期: 2017-04-11  修回日期: 2017-09-21  接受日期: 2018-01-02

基金项目: 国家自然科学基金资助项目(U1503291);新疆维吾尔族自治区国际合作项目(20156017);新疆维吾尔族自治区重点实验室基金资助项目(2016D03006)

作者简介: 周曙光, 博士, 助理研究员, 主要从事数学地质、勘查地球化学和成矿预测相关研究。E-mail:zhoushuguang@ms.xjb.ac.cn

Application of Portable X-ray Fluorescence Spectrometer in the Analysis of Rock Samples

1. 

Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Wulumuqi 830011, China

2. 

Xinjiang Laboratory of Mineral Resources and Digital Geology, Wulumuqi 830011, China

Received Date: 2017-04-11
Revised Date: 2017-09-21
Accepted Date: 2018-01-02

摘要:便携式X射线荧光光谱仪(PXRF)因具有快速、无损检测元素含量的能力,通常被用于野外或实验室地质样品的元素含量检测工作中,对于大多数地质样品,在2 min内就能够获得几十种元素的半定量-定量分析结果。但在实际应用中,被测样品的表面平整度、样品中物质的均一性和施测时间等因素都会影响元素分析结果。为了进一步了解样品类型和分析测试方法等因素对元素分析的具体影响,本文对比了PXRF与实验室分析结果、岩石和粉末样品PXRF分析结果、不同检测时间所得PXRF分析结果的关系,在不损失过多分析精度的前提下提出了通过PXRF降低勘查成本、提高工作效率的方案。结果表明:用PXRF直接分析岩石样品时,大多数元素的分析结果可靠性较差,尤其是成矿预测工作中常用的Cu、Pb、Zn、As和Ni等元素;粉末样品的PXRF分析结果与实验室分析结果具有较好的相关性,表明对岩石样品进行粉碎处理能够明显改善PXRF分析质量;元素种类不同,岩石和粉末样品PXRF测量结果的相关性也不同。因此,在实际工作中可以根据感兴趣的目标元素确定是否需要对岩石样品进行粉碎制样处理;检测时间对元素含量分析结果没有明显影响,对于特定元素,如果能够在较短时间内获得其含量信息,则无需增加检测时间。

关键词: 便携式X射线荧光光谱仪, 岩石样品, 岩石粉末样品, 元素含量, 检测时间

Application of Portable X-ray Fluorescence Spectrometer in the Analysis of Rock Samples

KEY WORDS: Portable X-ray Fluorescence Spectrometer, rock sample, rock powder sample, element content, measurement time

Highlights

· Some problems of Portable X-ray Fluorescence Spectrometer applied in geochemical sample analysis were clarified.

· The analytical results of different types of samples measured by different analytical equipments were compared to establish the optimal experimental schemes.

· A feasible workflow for the application of Portable X-ray Fluorescence Spectrometer was proposed to improve the analytical efficiency of geochemical samples.

本文参考文献

[1]

Zhang W, Lentz D R, Charnley B E, et al. Petrogeochemical assessment of rock units and identification of alteration/mineralization indicators using portable X-ray fluorescence measurements:Applications to the Fire Tower Zone (W-Mo-Bi) and the North Zone (Sn-Zn-In), Mount Pleasant deposit, New Brunswick, Canada[J].Journal of Geochemical Exploration, 2017, 177: 61-72. doi: 10.1016/j.gexplo.2017.02.005

[2]

Liao S, Tao C, Li H, et al. Use of portable X-ray fluorescence in the analysis of surficial sediments in the exploration of hydrothermal vents on the Southwest Indian Ridge[J].Acta Oceanologica Sinica, 2017, 36(7): 66-76. doi: 10.1007/s13131-017-1085-0

[3]

Ribeiro B T, Silva S H G, Silva E A, et al. Portable X-ray fluorescence (pXRF) applications in tropical soil science[J].Ciência E Agrotecnologia, 2017, 41(3): 245-254. doi: 10.1590/1413-70542017413000117

[4]

黄阳晓. 对比等离子发射光谱法/原子荧光法探讨便携式X射线荧光光谱法在测定土壤重金属中的应用[J]. 广东化工, 2016, 43(13): 261-263. doi: 10.3969/j.issn.1007-1865.2016.13.127

Huang Y X. Compared with plasma emission spectrometry, atomic fluorescence method to investigate the portable X-ray fluorescence spectrometry in determination of the application of the soil heavy metal[J].Guangdong Chemical Industry, 2016, 43(13): 261-263. doi: 10.3969/j.issn.1007-1865.2016.13.127

[5]

王豹, 余建新, 黄标, 等. 便携式X射线荧光光谱仪快速监测重金属土壤环境质量[J]. 光谱学与光谱分析, 2015, 35(6): 1735-1740.

Wang B, Yu J X, Huang B, et al. Fast monitoring soil environmental qualities of heavy metal by portable X-ray fluorescence spectrometer[J]. Spectroscopy and Spectral Analysis, 2015, 35(6): 1735-1740.

[6]

廖学亮, 程大伟, 周超, 等. 便携式X射线荧光光谱法检测大米中的镉[J]. 粮食与饲料工业, 2014, (9): 62-65.

Liao X L, Cheng D W, Zhou C, et al. Determination of cadmium in rice by portable X-ray fluorescence spectrometer[J]. Cereal & Feed Industry, 2014, (9): 62-65.

[7]

耿志旺, 乐健, 杨永健, 等. 便携式X射线荧光光谱仪快速鉴别硫熏八角[J]. 食品安全质量检测学报, 2017, 8(6): 2277-2281.

Geng Z W, Le J, Yang Y J, et al. Rapid screening of sulfur fumigated star anises by field-portable X-ray fluorescence[J]. Journal of Food Safety and Quality, 2017, 8(6): 2277-2281.

[8]

聂黎行, 张烨, 朱俐, 等. 便携式X射线荧光光谱快速无损分析牛黄清心丸(局方)中汞、砷含量及均匀度[J]. 光谱学与光谱分析, 2017, 37(10): 3225-3228.

Ni L X, Zhang Y, Zhu L, et al. Fast and nondestructive analysis of content of mercury and arsenic and homogeneity of Niuhuang Qingxin pills by portable X-ray fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2017, 37(10): 3225-3228.

[9]

蒋小良, 兰丽丽, 叶丽贞, 等. 便携式能量色散X射线荧光光谱法快速检测玩具中5种元素[J]. 皮革与化工, 2016, 33(6): 12-14.

Jiang X L, Lan L L, Ye L Z, et al. Rapid determination of 5 elements in toys by portable energy dispersion X-ray flourescence spectrometry[J]. Leather and Chemicals, 2016, 33(6): 12-14.

[10]

Arne D C, Mackie R A, Jones S A, et al. The use of property-scale portable X-ray fluorescence data in gold exploration:Advantages and limitations[J].Geochemistry:Exploration, Environment, Analysis, 2014, 14(3): 233-244. doi: 10.1144/geochem2013-233

[11]

Sarala P. Comparison of different portable XRF methods for determining till geochemistry[J].Geochemistry:Exploration, Environment, Analysis, 2016, 16(3-4): 181-192. doi: 10.1144/geochem2012-162

[12]

le Vaillant M, Barnes S J, Fisher L, et al. Use and calibration of portable X-ray fluorescence analysers:Application to lithogeochemical exploration for komatiite-hosted nickel sulphide deposits[J].Geochemistry:Exploration, Environment, Analysis, 2014, 14(3): 199-209. doi: 10.1144/geochem2012-166

[13]

李向超. 便携式X射线荧光光谱仪现场测定地质样品中钛[J]. 冶金分析, 2014, 34(4): 32-36.

Li X C. On-site determination of titanium in geological samples by portable X-ray fluorescence spectrometer[J]. Metallurgical Analysis, 2014, 34(4): 32-36.

[14]

Uvarova Y A, Gazley M F, Cleverley J S, et al. Representative, high-spatial resolution geochemistry from diamond drill fines (powders):An example from Brukunga, Adelaide, South Australia[J].Journal of Geochemical Exploration, 2016, 170: 1-9. doi: 10.1016/j.gexplo.2016.08.010

[15]

Young K E, Evans C A, Hodges K V, et al. A review of the handheld X-ray fluorescence spectrometer as a tool for field geologic investigations on Earth and in planetary surface exploration[J].Applied Geochemistry, 2016, 72: 77-87. doi: 10.1016/j.apgeochem.2016.07.003

[16]

Hall G E M, McClenaghan M B, Page L, et al. Application of portable XRF to the direct analysis of till samples from various deposit types in Canada[J].Geochemistry:Exploration, Environment, Analysis, 2016, 16(1): 62-84. doi: 10.1144/geochem2015-371

[17]

杨桂兰, 商照聪, 李良君, 等. 便携式X射线荧光光谱法在土壤重金属快速检测中的应用[J]. 应用化工, 2016, 45(8): 1586-1591.

Yang G L, Shang Z C, Li L J, et al. Application of portable-XRF spectrometry for rapid determination of common heavy metals in soil[J]. Applied Chemical Industry, 2016, 45(8): 1586-1591.

[18]

邝荣禧, 胡文友, 何跃, 等. 便携式X射线荧光光谱法(PXRF)在矿区农田土壤重金属快速检测中的应用研究[J]. 土壤, 2015, 47(3): 589-595.

Kuang R X, Hu W Y, He Y, et al. Application of portable X-ray fluorescence (PXRF) for rapid analysis of heavy metals in agricultural soils around mining area[J]. Soils, 2015, 47(3): 589-595.

[19]

冉景, 王德建, 王灿, 等. 便携式X射线荧光光谱法与原子吸收/原子荧光法测定土壤重金属的对比研究[J]. 光谱学与光谱分析, 2014, 34(11): 3113-3118. doi: 10.3964/j.issn.1000-0593(2014)11-3113-06

Ran J, Wang D J, Wang C, et al. Comparison of soil heavy metals determined by AAS/AFS and portable X-ray fluorescense analysis[J].Spectroscopy and Spectral Analysis, 2014, 34(11): 3113-3118. doi: 10.3964/j.issn.1000-0593(2014)11-3113-06

[20]

杨帆, 郝志红, 刘华忠, 等. 便携式能量色散X射线荧光光谱仪在新疆东天山浅钻化探异常查证中的应用[J]. 岩矿测试, 2015, 34(6): 665-671.

Yang F, Hao Z H, Liu H Z, et al. Application of Minipal 4 portable energy dispersive X-ray fluorescence spectrometer in the verification of geochemical anomaly delineated by shallow hole drill core in Eastern Tianshan[J]. Rock and Mineral Analysis, 2015, 34(6): 665-671.

[21]

龙灵利, 王京彬, 王玉往, 等. 东天山卡拉塔格矿集区赋矿火山岩地层时代探讨——SHRIMP锆石U-Pb年龄证据[J]. 矿产勘查, 2016, 7(1): 31-37.

Long L L, Wang J B, Wang Y W, et al. Discussion on the age of ore-host volcanic strata in the Kalatage ore concentration area, Eastern Tianshan:Evidence from SHRIMP zircon U-Pb dating[J]. Mineral Exploration, 2016, 7(1): 31-37.

[22]

于明杰, 王京彬, 毛启贵, 等. 东天山卡拉塔格地区梅岭铜(金)矿床M1号矿体黄铁矿热电性特征及其地质意义[J]. 矿产勘查, 2016, 7(1): 149-156.

Yu M J, Wang J B, Mao Q G, et al. Pyroelectricitical characteristics of pyrite from the No.M1 orebody in Meiling copper-gold deposit and its geological significance in the Kalatage area, Eastern Tianshan[J]. Mineral Exploration, 2016, 7(1): 149-156.

[23]

于明杰. 东天山卡拉塔格矿集区梅岭铜锌(金)矿床成矿作用[D]: 北京: 中国地质大学(北京), 2016.

Yu M J. Metellogeneses in Relation to the Meiling Cu-Zn (Au) Deposit in the Kalatage Ore Concentration Area, Eastern Tianshan Mountain, Xinjiang, NW China[D]. Beijing: China University of Geosciences (Beijing), 2016.

[24]

Zhu Y, Weindorf D C, Zhang W, et al. Characterizing soils using a portable X-ray fluorescence spectrometer:1.Soil texture[J]. Geoderma, 2011, 167-168(Supplement C): 167-177.

[25]

马德锡, 杨进, 陈孝强, 等. 便携式X荧光仪在多金属矿区的应用[J]. 物探与化探, 2013, 37(1): 63-66. doi: 10.11720/wtyht.2013.1.11

Ma D X, Yang J, Chen X Q, et al. The application of portable X-ray fluorescence instrument to the polymetallic ore district[J].Geophysical & Geochemical Exploration, 2013, 37(1): 63-66. doi: 10.11720/wtyht.2013.1.11

[26]

Fisher L, Gazley M F, Baensch A, et al. Resolution of geochemical and lithostratigraphic complexity:A workflow for application of portable X-ray fluorescence to mineral exploration[J].Geochemistry:Exploration, Environment, Analysis, 2014, 14(2): 149-159. doi: 10.1144/geochem2012-158

[27]

董天宇, 王海江, YungerJ A, 等. 便携式X射线荧光光谱仪实验室异位检测法的实用性研究[J]. 土壤, 2017, 49(4): 853-857.

Dong T Y, Wang H J, Yunger J A, et al. Practicality validation of portable X-ray fluorescence for ex-situ measuring soil heavy metals in laboratory[J]. Soils, 2017, 49(4): 853-857.

[28]

Gazley M F, Bonnett L C, Fisher L A, et al. A workflow for exploration sampling in regolith-dominated terranes using portable X-ray fluorescence:Comparison with laboratory data and a case study[J].Australian Journal of Earth Sciences, 2017, 64(7): 903-917. doi: 10.1080/08120099.2017.1367721

相似文献(共20条)

[1]

王昌燧, 毛振伟, 朱铁权, 何伟, 贾兴和, 张茂林, 黄宇营. 斯里兰卡曼泰遗址出土青花瓷的化学成分分析及产地初探. 岩矿测试, 2008, 27(1): 37-40.

[2]

杨载明. 便携式X射线荧光光谱仪现场测定高含量钡地质样品中的钒. 岩矿测试, 2013, 32(4): 665-667.

[3]

张芳, 张文华. 发射光谱法测定碳酸盐岩石样品中8个痕量元素. 岩矿测试, 1995, (1): 37-40.

[4]

刘丛强, 马英军. 微波密闭消解-等离子体质谱法测定岩石样品中的稀土元素. 岩矿测试, 1999, (3): 189-192.

[5]

魏少妮, 古丽冰. 对磺基苯偶氮变色酸分光光度法测定岩石样品中的氟. 岩矿测试, 2009, 28(6): 590-592.

[6]

谢文明, , 张玲金. 岩石样品中有机物的超临界萃取行为. 岩矿测试, 2002, (4): 252-258.

[7]

詹秀春, 樊兴涛, 李迎春, 王袆亚. 直接粉末制样-小型偏振激发能量色散X射线荧光光谱仪分析地质样品中多元素. 岩矿测试, 2009, 28(6): 501-506.

[8]

李强, 张学华. 手持式X射线荧光光谱仪测定富钴结壳样品中锰铁钴镍铜锌. 岩矿测试, 2013, 32(5): 724-728.

[9]

, 陈永君, 李国会. 便携式波长色散X射线荧光光谱仪及初步应用. 岩矿测试, 2001, (4): 301-304.

[10]

于兆水, 张勤, 李小莉, 樊守忠, 潘晏山, 李国会. 高压粉末制样波长色散X射线荧光光谱法测定生物样品中23种元素. 岩矿测试, 2014, 33(6): 844-848.

[11]

陈永君. 岩石中多元素的X射线荧光光谱测定——经验系数法. 岩矿测试, 1985, (4): 342-346.

[12]

修凤凤, 樊勇, 李俊雨, 朱义杰. 粉末压片-波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中18种次量元素. 岩矿测试, 2018, 37(5): 526-532. doi: 10.15898/j.cnki.11-2131/td.201704170061

[13]

张勤, 李国会, 潘宴山, 李小莉, 樊守忠. Minipal 4便携式能量色散X射线荧光光谱仪在勘查地球化学中的应用. 岩矿测试, 2007, 26(5): 377-380.

[14]

李国会, 樊守忠. X射线荧光光谱法直接测定碳酸盐岩石中主次痕量元素. 岩矿测试, 1997, (1): 45-50.

[15]

邹海峰, 苏克. X射线荧光光谱法直接测定地质样品中多种痕量元素. 岩矿测试, 1998, (3): 207-210.

[16]

童晓民, 臧树良, . X射线荧光光谱测定钛合金样品中多元素. 岩矿测试, 2002, (3): 215-218.

[17]

张广玉, 赵世煌, 邓晃, 郭跃梅, 井德刚, 汪艳芸. 手持式X射线荧光光谱多点测试技术在地质岩心和岩石标本预研究中的应用. 岩矿测试, 2017, 36(5): 501-509. doi: 10.15898/j.cnki.11-2131/td.201610120156

[18]

陈学智, 张立行, 檀向斌, 蒋文艳. ICP固体粉末法光谱定量测定岩石中微量锆、铌、钇、(钔东)等十五项元素. 岩矿测试, 1982, (3): 67-72.

[19]

李莉. 利用Multi EA(R)2000型元素分析仪测量含铅样品中的碳硫含量. 岩矿测试, 2004, (4): 319-320.

[20]

梁国立, 王毅民. 岩石中低量稀土和其他痕量元素的X-荧光光谱测定. 岩矿测试, 1984, (1): 58-63.

计量
  • PDF下载量(33)
  • 文章访问量(526)
  • HTML全文浏览量(159)
  • 被引次数(0)
目录

Figures And Tables

便携式X射线荧光光谱仪在岩石样品分析中的应用研究

周曙光, 廖世斌, 周可法, 王金林, 刘盈娣