【引用本文】 张烨毓, 曹茜, 黄毅, 等. 应用高温甲烷吸附实验研究川东北地区五峰组页岩甲烷吸附能力[J]. 岩矿测试, 2020, 39(2): 188-198. doi: 10.15898/j.cnki.11-2131/td.201908210126
ZHANG Ye-yu, CAO Qian, HUANG Yi, et al. Application of High-temperature Methane Adsorption Experiment to Study the Adsorption Capacity of Methane in Shales from the Wufeng Formation, Northeast Sichuan[J]. Rock and Mineral Analysis, 2020, 39(2): 188-198. doi: 10.15898/j.cnki.11-2131/td.201908210126

应用高温甲烷吸附实验研究川东北地区五峰组页岩甲烷吸附能力

1. 

页岩气评价与开采四川省重点实验室, 四川 成都 610091

2. 

自然资源部复杂构造区页岩气勘探开发工程技术创新中心, 四川 成都 610091

3. 

四川省科源工程技术测试中心, 四川 成都 610091

收稿日期: 2019-08-21  修回日期: 2019-09-10  接受日期: 2019-10-21

基金项目: 四川省院省校合作项目“四川盆地上二叠统海陆过渡相页岩气成藏条件研究(省院省校重大)”(2018JZ0003)

作者简介: 张烨毓, 工程师, 从事非常规油气储层描述工作。E-mail:1220489877@qq.com

Application of High-temperature Methane Adsorption Experiment to Study the Adsorption Capacity of Methane in Shales from the Wufeng Formation, Northeast Sichuan

1. 

Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Chengdu 610091, China

2. 

Technical Innovation Center for Shale Gas Exploration and Development in Complex Structural Areas, Ministry of Natural Resources, Chengdu 610091, China

3. 

Sichuan Keyuan Testing Center of Engineering Technology, Chengdu 610091, China

Received Date: 2019-08-21
Revised Date: 2019-09-10
Accepted Date: 2019-10-21

摘要:页岩甲烷吸附能力是决定页岩气井开采方案的重要参数,对评估页岩气藏潜力意义重大。干酪根类型、总有机碳含量、矿物组成、成熟度和孔径等是影响页岩吸附性能的因素,但针对高温高压下过剩吸附现象对页岩甲烷吸附能力影响的研究还需开展进一步的探索。为揭示四川盆地东北地区五峰组页岩甲烷吸附能力,本文通过场发射扫描电镜、低温氮气吸附和高压甲烷吸附实验,研究了高温高压下页岩的甲烷吸附能力,并分析了页岩孔隙结构等对页岩吸附能力的影响。结果表明:①五峰组页岩孔隙结构非均质性强,发育有机孔隙、粒(晶)间孔隙、粒(晶)内孔隙和粒(晶)间溶孔等多种孔隙;②比表面积平均为19.1282m2/g;孔体积平均为0.0195cm3/g;孔径平均为5.2226nm;③修正后的饱和吸附气量为2.56m3/t;④五峰组页岩甲烷吸附性能受控于比表面积、孔体积;有机质含量越大、有机质热演化程度越低,其甲烷吸附性能越强;⑤孔隙结构是影响页岩甲烷吸附能力的重要内因。同时指出低压条件下的实验吸附曲线不适合直接评价页岩甲烷吸附能力。

关键词: 川东北, 五峰组, 页岩, 甲烷, 吸附能力, 孔隙, 超临界状态

要点

(1) 探索了过剩吸附现象对五峰组页岩甲烷吸附能力的影响。

(2) 揭示了孔隙结构是影响页岩的甲烷吸附能力的重要内因。

(3) 证明了低压条件下的吸附曲线不适合直接评价五峰组页岩甲烷吸附能力。

Application of High-temperature Methane Adsorption Experiment to Study the Adsorption Capacity of Methane in Shales from the Wufeng Formation, Northeast Sichuan

ABSTRACT

BACKGROUND:

Shale methane adsorption capacity is not only a significant parameter to determine the exploration and exploitation plan, but also a critical criterion to evaluate the potential of a shale gas reservoir. Types of kerogen, total organic carbon content, mineral composition, maturity, and pore size are factors that affect shale adsorption performance; however, not enough attention is being focused on the influence of excess adsorption under high temperature and high pressure on shale methane adsorption capacity.

OBJECTIVES:

To reveal the influence of excess adsorption under high temperature and high pressure on the adsorption capacity of methane from the Wufeng Formation shale in Northeast Sichuan.

METHODS:

Based on methods of field emission scanning electron microscopy, low-temperature nitrogen adsorption test, and high-pressure methane adsorption test, the shale methane adsorption capacity under high temperature and pressure was studied, and the influence of shale pore structure on the shale adsorption capacity was analyzed.

RESULTS:

The types of pore structure in the Wufeng Formation shale were diverse, including organic, intergranular, intercrystalline, and intergranular dissolved pore. The average specific surface area was 19.1282m2/g, while average pore volume and pore diameters were 0.0195cm3/g and 5.2226nm, respectively. The corrected adsorption capacity of shale in the Wufeng Formation was 2.56m3/t. The Wufeng Formation shale methane adsorption performance was controlled by specific surface area and pore volume. The larger the organic matter content, the lower the thermal evolution of organic matter and the stronger its methane adsorption performance. Pore structure was an important internal factor affecting the shale methane adsorption capacity.

CONCLUSIONS:

The experimental adsorption curve under low pressure is not suitable for directly evaluating the shale methane adsorption capacity.

KEY WORDS: Northeast Sichuan, the Wufeng Formation, shale, methane, adsorption capacity, pore, supercritical state

HIGHLIGHTS

(1) The effect of excess adsorption on adsorption capacity of the methane in the Wufeng Formation shale was explored.

(2) The pore structure was an important internal factor that affects the shale methane adsorption capacity.

(3) It was proved that the adsorption curve under low pressure conditions was not suitable for directly evaluating the adsorption capacity of methane in the Wufeng Formation shale.

本文参考文献

[1]

位云生, 贾爱林, 何东博, 等. 中国页岩气与致密气开发特征与开发技术异同[J]. 天然气工业, 2017, 37(11): 43-52. doi: 10.3787/j.issn.1000-0976.2017.11.006

Wei Y S, Jia A L, He D B, et al. Comparative analysis of development characteristics and technologies between shale gas and tight gas in China[J].Natural Gas Industry, 2017, 37(11): 43-52. doi: 10.3787/j.issn.1000-0976.2017.11.006

[2]

马永生, 蔡勋育, 赵培荣, 等. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574.

Ma Y S, Cai X Y, Zhao P R, et al. China's shale gas exploration and development:Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574.

[3]

胡东风, 张汉荣, 倪楷, 等. 四川盆地东南缘海相页岩气保存条件及其主控因素[J]. 天然气工业, 2014, 34(6): 17-23. doi: 10.3787/j.issn.1000-0976.2014.06.003

Hu D F, Zhang H R, Ni K, et al. Main controlling factors for gas preservation conditions of marine shales in southeastern margins of the Sichuan Basin[J].Natural Gas Industry, 2014, 34(6): 17-23. doi: 10.3787/j.issn.1000-0976.2014.06.003

[4]

朱汉卿, 贾爱林, 位云生, 等. 昭通示范区龙马溪组页岩微观孔隙结构特征及吸附能力[J]. 油气地质与采收率, 2018, 25(4): 1-6.

Zhu H Q, Jia A L, Wei Y S, et al. Characteristics of microscopic pore structure and methane adsorption capacity of shale in the Longmaxi Formation in the Zhaotong Area[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(4): 1-6.

[5]

孙梦迪, 于炳松, 陈颂, 等. 渝东南地区下寒武统牛蹄塘组页岩储层特征及甲烷吸附能力——以渝科1井和酉科1井为例[J]. 东北石油大学学报, 2015, 39(1): 69-79. doi: 10.3969/j.issn.2095-4107.2015.01.009

Sun M D, Yu B S, Chen S, et al. The reservoir characteristics and adsorption capacity of the Lower Cambrian Niutitang Formation shale in southeast of Chongqing:A case study of Well Yuke1 and Well Youke1[J].Journal of Northeast Petroleum University, 2015, 39(1): 69-79. doi: 10.3969/j.issn.2095-4107.2015.01.009

[6]

魏志红, 魏祥峰. 页岩不同类型孔隙的含气性差异——以四川盆地焦石坝地区五峰组—龙马溪组为例[J]. 天然气工业, 2014, 34(6): 37-41. doi: 10.3787/j.issn.1000-0976.2014.06.006

Wei Z H, Wei X F. Comparison of gas-bearing property between different pore types of shale:A case from the Upper Ordovician Wufeng and Longmaxi Fms in the Jiaoshiba Area, Sichuan Basin[J].Natural Gas Industry, 2014, 34(6): 37-41. doi: 10.3787/j.issn.1000-0976.2014.06.006

[7]

王香增, 张丽霞, 李宗田, 等. 鄂尔多斯盆地延长组陆相页岩孔隙类型划分方案及其油气地质意义[J]. 石油与天然气地质, 2016, 37(1): 1-7.

Wang X Z, Zhang L X, Li Z T, et al. Pore type classification scheme for continental Yanchang Shale in Ordos Basin and its geological significance[J]. Oil & Gas Geology, 2016, 37(1): 1-7.

[8]

曹茜, 周文, 陈文玲, 等. 鄂尔多斯盆地南部延长组长7段陆相页岩气地层孔隙类型、尺度及成因分析[J]. 矿物岩石, 2015, 35(2): 90-97.

Cao Q, Zhou W, Chen W L, et al. Analysis of pore types, sizes and genesis in continental shale gas reservoir of Chang 7 of Yanchang Formation, Ordos Basin[J]. Journal of Mineral Petrology, 2015, 35(2): 90-97.

[9]

张廷山, 杨洋, 龚其森, 等. 四川盆地南部早古生代海相页岩微观孔隙特征及发育控制因素[J]. 地质学报, 2014, 88(9): 1728-1740.

Zhang Y S, Yang Y, Gong Q S, et al. Characteristics and mechanisms of the micro-pores in the Early Palaeozoic Marine Shale, Southern Sichuan Basin[J]. Acta Geologica Sinica, 2014, 88(9): 1728-1740.

[10]

刘尧文, 王进, 张梦吟, 等. 四川盆地涪陵地区五峰—龙马溪组页岩气层孔隙特征及对开发的启示[J]. 石油实验地质, 2018, 40(1): 44-50.

Liu Y W, Wang J, Zhang M Y, et al. Pore features of shale gas layer in Wufeng—Longmaxi Formation in Fuling area of Sichun Basin and the application to development[J]. Petroleum Geology & Experiment, 2018, 40(1): 44-50.

[11]

帅琴, 黄瑞成, 高强, 等. 页岩气实验测试技术现状与研究进展[J]. 岩矿测试, 2012, 31(6): 931-938. doi: 10.3969/j.issn.0254-5357.2012.06.003

Shuai Q, Huang R C, Gao Q, et al. Research development of analytical techniques for shale gas[J]. Rock and Mineral Analysis, 2012, 31(6): 931-938. doi: 10.3969/j.issn.0254-5357.2012.06.003

[12]

白名岗, 夏响华, 张聪, 等. 场发射扫描电镜及PerGeos系统在安页1井龙马溪组页岩有机质孔隙研究中的联合应用[J]. 岩矿测试, 2018, 37(3): 225-234.

Bai M G, Xia X H, Zhang C, et al. Study on shale organic porosity in the Longmaxi Formation, AnYe-1 Well using field emission-scanning electron microscopy and PerGeos system[J]. Rock and Mineral Analysis, 2018, 37(3): 225-234.

[13]

王羽, 金婵, 汪丽华, 等. 应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征[J]. 岩矿测试, 2015, 34(3): 278-285.

Wang Y, Jin C, Wang L H, et al. Characterization of pore structures of Jiulaodong Formation shale in the Sichuan Basin by SEM with Ar-ion milling[J]. Rock and Mineral Analysis, 2015, 34(3): 278-285.

[14]

Gasparik M, Ghanizadeh A, Bertier P, et al. High-pressure methane sorption isotherms of black shales from the Netherlands[J]. Energy & Fuels, 2012, 26(8): 4995-5004.

[15]

Cheng M, Li G S, Chen L J, et al. Mechanisms analysis of shalegas supercritical adsorption and modeling of isorption adsorption[J].Journal of China Coal Society, 2014, 39(Supplement1): 179-183.

[16]

Zhou L, Zhou Y P, Li M, et al. Experimental and modeling study of the adsorption of supercritical methane on a high surface activated carbon[J].Langmuir, 2000, 16(14): 5955-5959. doi: 10.1021/la991159w

[17]

Zhang T W, Geoffrey S E, Stephen C R, et al. Effect of organic matter type and thermal maturity on methane adsorption in shale gas systems[J].Organic Geochemistry, 2012, 47: 120-131. doi: 10.1016/j.orggeochem.2012.03.012

[18]

Ross D J K, Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J].Marine and Petroleum Geology, 2009, 26(6): 916-927. doi: 10.1016/j.marpetgeo.2008.06.004

[19]

Rahman M U, Kazi T G, Shaikh H, et al. Fractionation of manganese in soil samples collected from the Lakhra Coal Field in Pakistan using two modes of atomic absorption spectrometry[J].Atomic Spectroscopy, 2018, 39(6): 258-263.

[20]

Lashari A A, Kazi T G, Ali J, et al. Evaluation of sequential extraction schemes for the ETAAS determination of cadmium concentrations in coal samples from the Thar Coalfield, Pakistan[J].Atomic Spectroscopy, 2018, 39(5): 203-209.

[21]

Satyanarayanan M, Balaram V, Sawant S S, et al. Rapid determination of REEs, PGEs, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry[J]. Atomic Spectroscopy, 2018, 39(1): 1-15.

[22]

王运海. 四川盆地平桥地区五峰—龙马溪组页岩微观孔隙特征研究[J]. 石油实验地质, 2018, 40(3): 337-344.

Wang Y H. Micro-pore characteristics of shale from Wufeng—Longmaxi Formations in Pingqiao area, Sichuan Basin[J]. Petroleum Geology & Experiment, 2018, 40(3): 337-344.

[23]

胡华.黑色页岩中黄铁矿与有机质含量的关系及勘探意义[D].荆州: 长江大学.2017.

Hu H.Study on the Relationship of Pyrite and Content of Organic Matter in Marine Black Shale and Its Significance for Shale Gas Exploration[D]. Jingzhou: Yangtze University, 2017.

[24]

张景廉, 张平中. 黄铁矿对有机质成烃的催化作用讨论[J]. 地球科学进展, 1996, (3): 282-287. doi: 10.3321/j.issn:1001-8166.1996.03.009

Zhang J L, Zhang P Z. A discussion of pyrite catalysis on the hydrocarbon generation process[J].Advance in Earth Sciences, 1996, (3): 282-287. doi: 10.3321/j.issn:1001-8166.1996.03.009

[25]

马存飞, 董春梅, 栾国强, 等. 苏北盆地古近系页岩有机质孔发育特征及影响因素[J]. 中国石油大学学报(自然科学版), 2017, 41(3): 2-13.

Ma C F, Dong C M, Luan G Q, et al. Characteristics and its influencing factors of organic-matter pores in Paleogene Shale, Subei Basin[J]. Journal of China University of Petroleum, 2017, 41(3): 2-13.

[26]

周理, 吕昌忠, 王怡林, 等. 述评超临界温度气体在多孔固体上的物理吸附[J]. 化学进展, 1999, 11(3): 221-226. doi: 10.3321/j.issn:1005-281X.1999.03.001

Zhou L, Lü C Z, Wang Y L, et al. Physisorption of gases on porous solids at above-critical temperatures[J].Progess in Chemistry, 1999, 11(3): 221-226. doi: 10.3321/j.issn:1005-281X.1999.03.001

[27]

Chalmers G R L, Bustin R M. The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada[J].International Journal of Coal Geology, 2007, 70(1-3): 223-239. doi: 10.1016/j.coal.2006.05.001

[28]

Chalmers G R, Bustin R M, Power I M, et al. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses:Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units[J].AAPG Bulletin, 2012, 96(6): 1099-1119. doi: 10.1306/10171111052

[29]

周尚文, 李奇, 薛庆华, 等. 页岩容量法和重量法等温吸附实验对比研究[J]. 化工进展, 2017, 36(5): 1690-1697.

Zhou S W, Li Q, Xue Q H, et al. Comparative study on the volumetric and gravimetric method for isothermal adsorption experiment of shale[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1690-1697.

[30]

Bose T K, Chahine R, Marchildon L, et al. New dielectric method for the measurement of physical adsorption of gases at high pressure[J].Review of Scientific Instruments, 1987, 58(12): 2279-2283. doi: 10.1063/1.1139336

[31]

鲍云杰, 邓模, 翟常博, 等. 页岩对甲烷的吸附作用及其固气效应初步研究——以渝东南残留向斜为例[J]. 石油实验地质, 2016, 38(4): 509-513.

Bao Y J, Deng M, Zhai C B, et al. Methane adsorption and sealing effects of shale—A case study of relict synclines in the Southeastern Chongqing[J]. Petroleum Geology & Experiment, 2016, 38(4): 509-513.

[32]

张晓明, 石万忠, 舒志国, 等. 涪陵地区页岩含气量计算模型及应用[J]. 地球科学——中国地质大学学报, 2017, 42(7): 1157-1168.

Zhang X M, Shi W Z, Shu Z G, et al. Calculation model of shale gas content and its application in Fuling Area[J]. Editorial Committee of Earth Science—Journal of China University of Geosciences, 2017, 42(7): 1157-1168.

[33]

朱汉卿, 贾爱林, 位云生, 等. 蜀南地区富有机质页岩孔隙结构及超临界甲烷吸附能力[J]. 石油学报, 2018, 39(4): 391-401.

Zhu H Q, Jia A L, Wei Y S, et al. Pore structure and supercritical methane sorption capacity of organic-rich shales in Southern Sichuan Basin[J]. Acta Petrolei Sinica, 2018, 39(4): 391-401.

[34]

吴艳艳, 曹海虹, 丁安徐, 等. 页岩气储层孔隙特征差异及其对含气量影响[J]. 石油实验地质, 2015, 37(2): 231-236.

Wu Y Y, Cao H H, Ding A X, et al. Pore characteristics of a shale gas reservoir and its effect on gas content[J]. Petroleum Geology & Experiment, 2015, 37(2): 231-236.

[35]

赵靖舟, 王芮, 耳闯, 等. 鄂尔多斯盆地延长组长7段暗色页岩吸附特征及其影响因素[J]. 地学前缘, 2016, 23(1): 146-153.

Zhao J Z, Wang R, Er C, et al. Adsorption characteristics of Chang 7 shale from the Triassic Yanchang Formation in Ordos Basin, and its controlling factor[J]. Earth Science Frontiers, 2016, 23(1): 146-153.

[36]

郭少斌, 翟刚毅, 包书景, 等. 干酪根及黏土单矿物对甲烷吸附能力的差异性[J]. 石油实验地质, 2017, 39(5): 682-693.

Guo S B, Zhai G Y, Bao S J, et al. Difference of methane adsorption capacity of kerogen and clay minerals[J]. Petroleum Geology & Experiment, 2017, 39(5): 682-693.

相似文献(共18条)

[1]

白名岗, 夏响华, 张聪, 孟凡洋, 杨玉茹, 张春贺, 代峰, 熊杰, 王向华, 于伟欣. 场发射扫描电镜及PerGeos系统在安页1井龙马溪组页岩有机质孔隙研究中的联合应用. 岩矿测试, 2018, 37(3): 225-234. doi: 10.15898/j.cnki.11-2131/td.201803260030

[2]

张涛, 王小飞, 黎爽, 邓平晔. 压汞法测定页岩孔隙特征的影响因素分析. 岩矿测试, 2016, 35(2): 178-185. doi: 10.15898/j.cnki.11-2131/td.2016.02.010

[3]

陈生蓉, 帅琴, 高强, 田亚, 徐生瑞, 黄云杰. 基于扫描电镜-氮气吸脱附和压汞法的页岩孔隙结构研究. 岩矿测试, 2015, 34(6): 636-642. doi: 10.15898/j.cnki.11-2131/td.2015.06.006

[4]

马真乾, 王英滨, 于炳松. 渝东南地区下寒武统牛蹄塘组页岩孔径分布测试方法研究. 岩矿测试, 2018, 37(3): 244-255. doi: 10.15898/j.cnki.11-2131/td.201801090003

[5]

李忠煜, 赵江华, 何峻, 李艳广, 黎卫亮, 韩伟. 油气化探样品酸解气中甲烷与氢气的相关性研究. 岩矿测试, 2018, 37(3): 313-319. doi: 10.15898/j.cnki.11-2131/td.201710240170

[6]

刘金巍, 刘雪松, 边超, 张涛, 张智印, 魏建朋. 甲烷动态反应电感耦合等离子体质谱法测定地下水中痕量硒. 岩矿测试, 2019, 38(1): 85-91. doi: 10.15898/j.cnki.11-2131/td.201804200049

[7]

周建辉, 白金峰. 熔融玻璃片制样-X射线荧光光谱测定页岩中主量元素. 岩矿测试, 2009, 28(2): 179-181.

[8]

李回贵, 李化敏, 李长兴, 陈善乐. 应用扫描电镜-X射线能谱研究神东矿区砂岩中结构面的微观结构及元素特征. 岩矿测试, 2018, 37(1): 70-78. doi: 10.15898/j.cnki.11-2131/td.201705120080

[9]

程思海, , 张欣. 天然气水合物专题研讨会简介. 岩矿测试, 2001, (4): 297-298300.

[10]

梁汉东, 冉凡林, 张宏刚, 张月琴. 气相色谱法测定煤层瓦斯中低浓度氢气和氦气. 岩矿测试, 2005, (4): 254-258.

[11]

王羽, 金婵, 汪丽华, 王建强, 姜政, 王彦飞, 普洁. 应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征. 岩矿测试, 2015, 34(3): 278-285. doi: 10.15898/j.cnki.11-2131/td.2015.03.003

[12]

王海霞, 饶竹. 超临界萃取/气相色谱—质谱测定油页岩中的生物标志物. 岩矿测试, 2000, (2): 86-92.

[13]

王羽, 金婵, 汪丽华, 王建强, 姜政, 王彦飞. 基于SEM图像灰度水平的页岩孔隙分割方法研究. 岩矿测试, 2016, 35(6): 595-602. doi: 10.15898/j.cnki.11-2131/td.2016.06.005

[14]

庞河清, 曾焱, 刘成川, 黎华继, 彭军, 严焕榕, 陈俊. 基于氮气吸附-核磁共振-氩离子抛光场发射扫描电镜研究川西须五段泥质岩储层孔隙结构. 岩矿测试, 2017, 36(1): 66-74. doi: 10.15898/j.cnki.11-2131/td.2017.01.010

[15]

王坤阳, 杜谷, 杨玉杰, 董世涛, 喻晓林, 郭建威. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征. 岩矿测试, 2014, 33(5): 634-639.

[16]

戚明辉, 李君军, 曹茜. 基于扫描电镜和JMicroVision图像分析软件的泥页岩孔隙结构表征研究. 岩矿测试, 2019, 38(3): 260-269. doi: 10.15898/j.cnki.11-2131/td.201901160008

[17]

何廷鹏, 栾进华, 胡科, 李甜, 杨柳, 张跃磊. 渝东北城口地区Y1井页岩有机地球化学特征及勘探前景. 岩矿测试, 2018, 37(1): 87-95. doi: 10.15898/j.cnki.11-2131/td.201703230037

[18]

魏建谟, 郎庆勇. 超临界流体萃取技术的应用及展望. 岩矿测试, 1998, (3): 216-223.

计量
  • PDF下载量(4)
  • 文章访问量(272)
  • HTML全文浏览量(63)
  • 被引次数(0)
目录

Figures And Tables

应用高温甲烷吸附实验研究川东北地区五峰组页岩甲烷吸附能力

张烨毓, 曹茜, 黄毅, 戚明辉, 李孝甫, 林丹