【引用本文】 夏炎, 宋延斌, 侯进凯, 等. 河南洛阳市土壤和农作物中钼分布规律与影响因素研究[J]. 岩矿测试, 2021, 40(6): 820-832. doi: 10.15898/j.cnki.11-2131/td.202104130052
XIA Yan, SONG Yan-bin, HOU Jin-kai, et al. Distribution Law and Influencing Factors of Molybdenum in Soils and Crops in Luoyang, Henan Province[J]. Rock and Mineral Analysis, 2021, 40(6): 820-832. doi: 10.15898/j.cnki.11-2131/td.202104130052

河南洛阳市土壤和农作物中钼分布规律与影响因素研究

河南省地质矿产勘查开发局第一地质矿产调查院, 河南 洛阳 471023

收稿日期: 2021-04-13  修回日期: 2121-04-21  接受日期: 2021-07-28

基金项目: 洛阳市硒资源详查项目(洛公交易采购[2018]053号)

作者简介: 夏炎, 工程师, 从事地质勘查、地球化学研究。E-mail: 1139936863@qq.com

通信作者: 王喜宽, 博士, 正高级工程师, 长期从事地球化学研究。E-mail: nmgwxk@126.com

Distribution Law and Influencing Factors of Molybdenum in Soils and Crops in Luoyang, Henan Province

No. 1 Institute of Geological and Mineral Resources Survey, Henan Geological and Mineral Exploration and Development Bureau, Luoyang 471023, China

Corresponding author: WANG Xi-kuan, nmgwxk@126.com

Received Date: 2021-04-13
Revised Date: 2121-04-21
Accepted Date: 2021-07-28

摘要:钼是人体和农作物必需的有益元素,具有防癌抗癌作用。由于不同地区土壤中钼含量和土壤酸碱性的不同,农作物中钼含量有很大差异,同时不同农作物对钼的吸收也不相同。研究不同农作物中钼富集规律可以为健康地质发展、富钼农产品开发、功能农业发展、种植结构调整提供依据。本文以洛阳市硒资源详查区及其他农业种植区为研究区,通过采集22种大田种植的农作物及其根系土,采用电感耦合等离子体质谱法(ICP-MS)测定土壤和农作物钼含量,研究了不同农作物钼含量特征及其影响因素。结果表明:洛阳市土壤钼含量较高,是中国土壤富钼特色地区。绿豆、豇豆、黑豆、黄豆、红小豆和花生是富集钼的主要农作物,钼平均含量>9mg/kg,富集系数>500%,属于钼的超富集农作物。芝麻、豆角、谷子、小麦、玉米和油菜籽钼含量较高,钼含量均值介于0.446~2.437mg/kg,富集系数介于40%~300%,属于富钼农作物。辣椒、大蒜、红薯、秋葵的钼含量介于0.1~0.3mg/kg,富集系数介于10%~30%,属于高钼农作物。苹果、梨、葡萄、石榴、樱桃与中药材银条的钼含量 < 0.05mg/kg,富集系数 < 5%,是低钼农作物。大多数农作物钼含量与根系土钼含量呈正相关,而苹果、葡萄、石榴、樱桃等水果钼含量与根系土钼含量呈负相关。研究揭示了在碱性环境下土壤中的钼更容易被农作物吸收。区内农作物与中国其他地区相比均呈富钼特征,是开发富钼农业产业的有利地区。依据不同农作物钼含量,选择出绿豆、豇豆、黑豆、黄豆、红小豆和花生是研究区特色富钼农产品,芝麻、豆角、谷子、小麦、玉米和油菜籽是富钼农产品,辣椒、大蒜、红薯、秋葵属于高钼农作物。本成果为研究区富钼农产品开发、调整种植结构提供了科学依据。

关键词: 洛阳市, 农作物, , 富集系数, 健康地质, 电感耦合等离子体质谱法

要点

(1) 绿豆、豇豆、黑豆、黄豆、红小豆和花生是钼的超富集农作物。芝麻、豆角、谷子、小麦、玉米和油菜籽是富钼农作物。苹果、梨、葡萄、石榴、樱桃等水果与银条是低钼农作物。

(2) 研究区是开发富钼农业产业的有利地区。

(3) 各种农作物中钼含量特征是科学利用富钼土地、调整农业种植结构、建设富钼农业产业的重要依据。

Distribution Law and Influencing Factors of Molybdenum in Soils and Crops in Luoyang, Henan Province

ABSTRACT

BACKGROUND:

Molybdenum is an essential and beneficial element for humans and crops and has an anti-cancer effect. The content of molybdenum and the pH of the soils are different in different regions, the content of molybdenum in crops varies greatly. At the same time, different crops have a different absorption ability of molybdenum. Studying the rules of molybdenum enrichment in different crops provides a basis for the development of healthy geology, the development of molybdenum-rich agricultural products, the development of functional agriculture, and the adjustment of planting structure.

OBJECTIVES:

To investigate Mo content in different crops and their controlling factors.

METHODS:

This study used the detailed survey area of selenium resources in Luoyang City and other agricultural planting areas as the research object. By collecting 22 kinds of crops and their root soils, inductively coupled plasma-mass spectrometry (ICP-MS) was used to determine the molybdenum content in soils and crops, and the characteristics and influencing factors of the content of molybdenum in different crops were studied.

RESULTS:

The content of molybdenum in the soil of Luoyang City was relatively high, which was the characteristic area of molybdenum-rich soil in China. Mung bean, cowpea, black bean, yellow bean, red bean and peanuts were the main molybdenum enrichment crops, with average >9mg/kg molybdenum content and enrichment factor >500%, which belonged to the molybdenum hyperaccumulator. Sesame, long bean, millet, wheat, corns and rapeseed had high molybdenum content, which ranged from 0.446mg/kg to 2.437mg/kg, and the enrichment coefficient ranged from 40% to 300%, which were molybdenum rich crops. The content of molybdenum in chili, garlic, sweet potatoes and okra ranged from 0.1mg/kg to 0.3mg/kg, and the enrichment factor ranged from 10% to 30%, which were high-molybdenum crops. The content of molybdenum in apple, pear, grape, pomegranate, cherry and Stachys floridana Schuttl.ex Benth was less than 0.05mg/kg, and the enrichment factor was less than 5%, which was a low-molybdenum crop. The content of molybdenum in most crops was positively correlated with that in root soils, while the content of molybdenum in apple, grape, pomegranate, and cherry was negatively correlated within the molybdenum content in the root soils.

CONCLUSIONS:

Studies have shown that molybdenum in soils is more easily absorbed by crops under an alkaline environment. Compared with other areas in China, the crop in the area is richer in molybdenum, so it is a favorable area for the development of a molybdenum-rich agricultural industry. According to the molybdenum content of different crops, mung bean, cowpea, black bean, yellow bean, red bean and peanuts were selected as the characteristic Mo-rich agricultural products in the study area; sesame, long bean, millet, wheat, corns and rapeseed were Mo-rich agricultural products; pepper, garlic, sweet potato and okra were high Mo agricultural products. The results provide a scientific basis for the development and adjustment of the molybdenum-rich agricultural product planting structure in the study area.

KEY WORDS: Luoyang City, crops, molybdenum, enrichment factor, GeoHealth, inductively coupled plasma-mass spectrometry

HIGHLIGHTS

(1) Mung bean, cowpea, black bean, yellow bean, red bean and peanuts are hyperaccumulators of molybdenum. Sesame, long bean, millet, wheat, corn and rapeseed are molybdenum-rich crops. Fruits such as apples, pears, grapes, pomegranates, cherries and Stachys floridana Schuttl.ex Benth are low-molybdenum crops.

(2) The study area is a favorable area for developing a molybdenum-rich agricultural industry.

(3) The characteristics of molybdenum content in different crops are an important basis for scientific utilization of Mo-rich land, adjustment of agricultural planting structure and construction of a Mo-rich agricultural industry.

本文参考文献

[1]

胡相红. 微量元素钼与人类健康[J]. 现代预防医学, 2001, 28(3): 353-355. doi: 10.3969/j.issn.1003-8507.2001.03.033

Hu X H. Essential trace element molybdenum of human body and human health[J].Modern Preventive Medicine, 2001, 28(3): 353-355. doi: 10.3969/j.issn.1003-8507.2001.03.033

[2]

Vishwanath M S. Molybdenum: An essential trace element[J].Nutrition in Clinical Practice, 1993, 8(6): 277-281. doi: 10.1177/0115426593008006277

[3]

杨自军, 龙塔, 冉林武, 等. 钼的生物学功能及其在动物生产中的作用[J]. 河南科技大学学报(农学版), 2004, 24(2): 40-42.

Yang Z J, Long T, Ran L W, et al. Molybdenum's biological function and roles in animal production[J]. Journal of Henan University of Science and Technology (Agricultural Science), 2004, 24(2): 40-42.

[4]

曾昭华, 曾雪萍. 中国癌症与土壤中钼元素的关系[J]. 农村生态环境, 2000, 16(2): 60-61.

Zeng Z H, Zeng X P. Cancer and soil Mo in China[J]. Rural Eco-Environment, 2000, 16(2): 60-61.

[5]

吴磊, 曹光辉, 颜世铭, 等. 微量元素钼与胃癌关系研究[J]. 微量元素与健康研究, 1996, 13(3): 1-2.

Wu L, Cao G H, Yan S M, et al. Investigation on the relationship between trace element Mo and gastric cancer[J]. Studies of Trace Elements and Health, 1996, 13(3): 1-2.

[6]

韩冰, 张菁华. 钼的生物学作用及钼缺乏对生物体的影响[J]. 菏泽医学专科学校学报, 2009, 21(1): 73-74. doi: 10.3969/j.issn.1008-4118.2009.01.035

Han B, Zhang J H. The biological function of molybdenum and the effect of molybdenum deficiency on the organism[J].Journal of Heze Medical College, 2009, 21(1): 73-74. doi: 10.3969/j.issn.1008-4118.2009.01.035

[7]

韦友欢, 黄秋婵. 钼对人体健康的生理效应及其机制研究[J]. 广西民族师范学院学报, 2010, 27(5): 10-12. doi: 10.3969/j.issn.1674-8891.2010.05.004

Wei Y H, Huang Q C. Physiological effects and mechanism of molybdenum on human health[J].Journal of Guangxi Normal University for Nationalites, 2010, 27(5): 10-12. doi: 10.3969/j.issn.1674-8891.2010.05.004

[8]

王丽, 郭锋. 生物微量元素钼与人体健康[J]. 化学世界, 2000, (8): 446-448. doi: 10.3969/j.issn.0367-6358.2000.08.017

Wang L, Guo F. Biological trace element molybdenum and human health[J].Chemistry World, 2000, (8): 446-448. doi: 10.3969/j.issn.0367-6358.2000.08.017

[9]

刘牧. 钼对人体健康的影响[J]. 中国钼业, 2001, 25(5): 43-45. doi: 10.3969/j.issn.1006-2602.2001.05.012

Liu M. The effect of Mo on human health[J].China Molybdenum Industry, 2001, 25(5): 43-45. doi: 10.3969/j.issn.1006-2602.2001.05.012

[10]

Janssen K A, Vitosh M L. Effect of lime, sulfur, and molybdenum on N2 fixation and yield of dark red kidney beans[J].Agronomy Journal, 1974, 66(6): 736-740. doi: 10.2134/agronj1974.00021962006600060008x

[11]

Hashimoto K, Yamasaki S. Effects of molybdenum application on the yield, nitrogen nutrition and nodule development of soybeans[J].Soil Science and Plant Nutrition, 1976, 22(4): 435-443. doi: 10.1080/00380768.1976.10433005

[12]

Yang M, Shi L, Xu F, et al. Effects of B, Mo, Zn, and their interactions on seed yield of rapeseed (Brassica napus L.)[J].Pedosphere, 2009, 19(1): 53-59. doi: 10.1016/S1002-0160(08)60083-1

[13]

Kandil H, Gad N, Abdelhamid M T, et al. Effects of different rates of phosphorus and molybdenum application on two varieties common bean of (Phaseolus vulgaris L.)[J]. Journal of Agricultural and Food Chemistry, 2013, 3(3): 8-16.

[14]

Ahmad J, Anwar S, Shad A A, et al. Yield and nutritional status of mungbean as influenced by molybdenum and phosphorus[J]. Pakistan Journal of Agricultural Research, 2021, 34(1): 144-153.

[15]

李芳亭, 鲁强, 王世国, 等. 黄土丘陵区土壤钼锌含量及农作物对钼锌的反应[J]. 农业环境保护, 2002, 21(6): 559-561.

Li F T, Lu Q, Wang S G, et al. Concentration of molybdenum and zinc in soil of upland of loess and response of crops[J]. Agro-Environmental Protection, 2002, 21(6): 559-561.

[16]

董玉明, 张建明. 施用硼、钼对蚕豆生长发育及产量的影响[J]. 安徽农业科学, 2003, 31(1): 152-153. doi: 10.3969/j.issn.0517-6611.2003.01.081

Dong Y M, Zhang J M. Effects of application of boron and molybdenum on growth and yield of broad bean[J].Journal of Anhui Agricultural Sciences, 2003, 31(1): 152-153. doi: 10.3969/j.issn.0517-6611.2003.01.081

[17]

周苏玫, 樊骅, 郭俊红, 等. 有机肥及锌硼钼微肥对花生产量和品质的影响[J]. 河南农业大学学报, 2003, 37(4): 335-338. doi: 10.3969/j.issn.1000-2340.2003.04.006

Zhou S M, Fan H, Guo J H, et al. Effects of organic manure and microelement fertilizer on the output and quality of peanut[J].Journal of Henan Agricultural University, 2003, 37(4): 335-338. doi: 10.3969/j.issn.1000-2340.2003.04.006

[18]

杜应琼, 廖新荣, 何江华, 等. 施用硼钼对花生生长发育和产量的影响[J]. 植物营养与肥料学报, 2002, 8(2): 229-233. doi: 10.3321/j.issn:1008-505X.2002.02.019

Du Y Q, Liao X R, He J H, et al. Effects of boron and molybdenum on growth and yield of peanut[J].Plant Nutrition and Fertilizer Science, 2002, 8(2): 229-233. doi: 10.3321/j.issn:1008-505X.2002.02.019

[19]

蔡妙珍, 刘鹏, 徐根娣, 等. 钼、锰营养对大豆碳氮代谢的影响[J]. 土壤学报, 2008, 45(1): 180-183. doi: 10.3321/j.issn:0564-3929.2008.01.025

Cai M Z, Liu P, Xu G D, et al. Effect of molybdenum and manganese application on metabolism of carbon and nitrogen in soybean[J].Acta Pedologica Sinica, 2008, 45(1): 180-183. doi: 10.3321/j.issn:0564-3929.2008.01.025

[20]

张剑, 唐莜春, 陈军响, 等. 镁硼锌钼营养对大棚番茄品质与产量的影响[J]. 浙江农业科学, 2009, (5): 879-881. doi: 10.3969/j.issn.0528-9017.2009.05.009

Zhang J, Tang Y C, Chen J X, et al. Effects of magnesium, boron, zinc and molybdenum nutrition on quality and yield of tomato in greenhouse[J].Journal of Zhejiang Agricultural Sciences, 2009, (5): 879-881. doi: 10.3969/j.issn.0528-9017.2009.05.009

[21]

吴拓, 杨刘, 降志兵, 等. 钼锌硼微量元素对大豆产量和品质的影响[J]. 南方农业, 2015, 31(9): 6-8.

Wu T, Yang L, Jiang Z B, et al. Effect of trace elements of molybdenum, zinc and boron on yield and quality of soybean[J]. South China Agriculture, 2015, 31(9): 6-8.

[22]

李珊, 张浩, 李启权, 等. 广元植烟土壤有效态微量元素的空间变异特征及影响因素[J]. 核农学报, 2017, 31(8): 1618-1625.

Li S, Zhang H, Li Q Q, et al. Spatial variability of soil available microelement contents and their influencing factors in tobacco growing area in Guangyuan City[J]. Journal of Nuclear Agricultural Sciences, 2017, 31(8): 1618-1625.

[23]

穆童, 卢秀萍, 许自成, 等. 罗平烟区土壤有效硼、钼含量与烟叶硼、钼含量的关系分析[J]. 中国土壤与肥料, 2017, (6): 44-50.

Mu T, Lu X P, Xu Z C, et al. The relationship between the contents of available boron and available molybdenum in soil with the contents of boron and molybdenum of tobacco leaf in Luoping[J]. Soil and Fertilizer Sciences in China, 2017, (6): 44-50.

[24]

彭月月, 余雪莲, 李启权, 等. 川西南高海拔烟区土壤微量元素空间分布特征及影响因素[J]. 中国烟草科学, 2018, 39(3): 39-47.

Peng Y Y, Yu X L, Li Q Q, et al. Spatial distribution and influencing factors of soil available microelements in high altitude tobacco planting areas in southwest Sichuan[J]. Chinese Tobacco Science, 2018, 39(3): 39-47.

[25]

刘勇军, 段淑辉, 彭曙光, 等. 常德植烟土壤微量元素丰缺状况及管理建议[J]. 湖南农业科学, 2019, (4): 41-44, 47.

Liu Y J, Duan S H, Peng S G, et al. Trace elements deficiency assessment and management suggestion of tobacco planting soil in Changde[J]. Hunan Agricultural Sciences, 2019, (4): 41-44, 47.

[26]

李良木, 温心怡, 卢秀萍, 等. 曲靖中海拔烟区土壤-烤烟钼含量状况及对烟叶感官质量的影响[J]. 中国土壤与肥料, 2019, (2): 145-151.

Li L M, Wen X Y, Lu X P, et al. The status of molybdenum in flue-cured tobacco and soil and its effects on tobacco quality in Qujing tobacco growing area[J]. Soil and Fertilizer Sciences in China, 2019, (2): 145-151.

[27]

胡瑞文, 刘勇军, 唐春闺, 等. 稻作烟区土壤硼钼养分垂直分布及与有机质的关系[J]. 中国烟草科学, 2020, 41(3): 9-15.

Hu R W, Liu Y J, Tang C G, et al. Vertical distribution of boron and molybdenum in soil and their relationship with organic matter in paddy-tobacco growing areas[J]. Chinese Tobacco Science, 2020, 41(3): 9-15.

[28]

刘崴, 胡俊栋, 杨红霞, 等. 电感耦合等离子体质谱联用技术在元素形态分析中的应用进展[J]. 岩矿测试, 2021, 40(3): 327-339.

Liu W, Hu J D, Yang H X, et al. Research progress on elemental speciation analysis by inductively coupled plasma-mass spectrometry hyphenated techniques[J]. Rock and Mineral Analysis, 2021, 40(3): 327-339.

[29]

齐亚彬. 坚决贯彻五中全会精神, 全力推进健康地质工作[N]. 中国矿业报, 2020-12-7(1).

Qi Y B. Resolutely implement the spirit of the fifth plenary session, to promote healthy geological work[N]. China Mining News, 2020-12-7(1).

[30]

王学求, 柳青青, 刘汉粮, 等. 关键元素与生命健康: 中国耕地缺硒吗?[J]. 地学前缘, 2021, 28(3): 412-423.

Wang X Q, Liu Q Q, Liu H L, et al. Key elements and human health: Is China's arable land selenium-deficient?[J]. Earth Science Frontiers, 2021, 28(3): 412-423.

[31]

侯青叶,杨忠芳,余涛. 中国土壤地球化学参数[M] . 北京: 地质出版社, 2020: 17

Hou Q Y,Yang Z F,Yu T. Soil geochemical dataset of China[M] . Beijing: Geological Publishing House, 2020: 17
[32]

廖启林, 刘聪, 蔡玉曼, 等. 江苏典型地区水稻与小麦籽实中元素生物富集系数(BCF)初步研究[J]. 中国地质, 2013, 40(1): 331-340.

Liao Q L, Liu C, Cai Y M, et al. A preliminary study of element bioconcentration factors within milled rice and wheatmeal in some typical areas of Jiangsu Province[J]. Geology in China, 2013, 40(1): 331-340.

[33]

贾婷. 不同作物对土壤钼富集规律的研究[D]. 福州: 福建农林大学, 2014: 32-33.

Jia T. Study on molybdenum enrichment regularity in soil by different crops[D]. Fuzhou: Fujian Agriculture and Forestry Universtity, 2014: 32-33.

[34]

彭珊珊, 张霖霖, 黄婷, 等. 豆制品中钼的分析研究[J]. 食品科学, 2002, 23(8): 210-211.

Peng S S, Zhang L L, Huang T, et al. Analysis of molybdenum in soybean products[J]. Food Science, 2002, 23(8): 210-211.

[35]

王振权, 张育华, 陈二钦, 等. 广西常用饲料、牧草中铜、锌、铁、锰、钴、钼含量的初步调查[J]. 广西农业大学学报, 1992, 11(4): 53-58.

Wang Z Q, Zhang Y H, Chen E Q, et al. Investigations on the contents of Cu, Zn, Fe, Mn, Co, Mo of feedstuffs and forages in Guangxi[J]. Journal of Guangxi Agricultural University, 1992, 11(4): 53-58.

[36]

李芳亭. 延安地区农作物施钼与人体健康的关系[J]. 农业环境保护, 1994, 13(5): 68-69.

Li F T. Relationship between molybdenum application to crops and human health in Yanan area[J]. Agro-Environmental Protection, 1994, 13(5): 68-69.

[37]

王振林. 冬小麦微量元素吸收特点的研究[J]. 山东农业大学学报, 1989, (3): 27-32.

Wang Z L. A study on the absorption of micronutrients by winter wheat[J]. Journal of Shandong Agricultural University, 1989, (3): 27-32.

[38]

陈祥友. 不同产地小麦33种元素分析[J]. 世界元素医学, 2011, 18(3-4): 36-37.

Chen X Y. Analysis of 33 elements in wheat from different areas[J]. World Elemental Medicine, 2011, 18(3-4): 36-37.

[39]

曹淑萍, 卢煜文. 微量元素Mo对宝坻大蒜生长的影响研究[J]. 天津农业科学, 2011, 18(1): 106-108.

Cao S P, Lu Y W. Effect of Mo on the growth of Baodi garlic[J]. Tianjin Agricultural Sciences, 2011, 18(1): 106-108.

[40]

王恕. 23种中国和法国小麦及小麦面粉样品中九种元素的分析[J]. 广东微量元素科学, 1999, 6(4): 54-58.

Wang S. Analysis on 9 trace elements in 23 kinds of wheat and wheat flour from China and France[J]. Guangdong Trace Elements Science, 1999, 6(4): 54-58.

[41]

王夔. 生命科学中的微量元素分析与数据手册[M] . 北京: 中国计量出版社, 1998: 156, 360-378.

Wang K. Trace element analysis and data handbook in the life science[M] . Beijing: Chinese Metrology Press, 1998: 156, 360-378.
[42]

Hiroyuki H, Akane A, Chic I, et al. Determination of mo-lybdenum in foods and human milk, and an estimate of average molybdenum intake in the Japanese population[J]. Journal of Nutritional Science and Vitaminology, 2004, 50(6): 404-409.

[43]

Choi M, Kang M, Kim M, et al. The analysis of copper, sele-nium, and molybdenum contents in frequently consumed foods and an estimation of their daily intake in Korean adults[J].Biological Trace Element Research, 2009, 128(2): 104-117. doi: 10.1007/s12011-008-8260-2

[44]

叶欣, 郭雅玲, 王果, 等. 福建省铁观音茶园土壤钼含量状况调查与分析[J]. 植物营养与肥料学报, 2011, 17(6): 1372-1378.

Ye X, Guo Y L, Wang G, et al. Investigation and analysis of soil molybdenum in the Tieguanyin tea plantations of Fujian Province[J]. Plant Nutrition and Fertilizer Science, 2011, 17(6): 1372-1378.

[45]

施宪, 王冬艳, 李月芬, 等. 吉林西部锰、钼元素土壤地球化学特征[J]. 世界地质, 2010, 29(2): 256-261.

Shi X, Wang D Y, Li Y F, et al. Soil geochemical characteristics of elements Mn, Mo in western Jilin Province[J]. Global Geology, 2010, 29(2): 256-261.

[46]

曾昭华. 农业生态与土壤环境中钼元素的关系[J]. 湖南地质, 2000, 19(3): 149-150.

Zeng Z H. Relationship between agroecology and molybdenum in soil environment[J]. Hunan Geology, 2000, 19(3): 149-150.

[47]

刘铮, 朱其清, 徐俊祥, 等. 中国土壤中钼的含量与分布规律[J]. 环境科学学报, 1990, 10(2): 132-137.

Liu Z, Zhu Q Q, Xu J X, et al. Contents and distribution of Mo in soils of China[J]. Acta Scientiae Circumstantiae, 1990, 10(2): 132-137.

[48]

张璐, 蔡泽江, 王慧颖, 等. 中国稻田土壤有效态中量和微量元素含量分布特征[J]. 农业工程学报, 2020, 36(16): 62-70.

Zhang L, Cai Z J, Wang H Y, et al. Distribution characteristics of effective medium and micronutrient element contents in paddy soils of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 62-70.

[49]

周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319-336.

Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319-336.

相似文献(共20条)

[1]

王中岐, 张敏, 田文辉. 能量色散X射线荧光光谱法测定钼矿石中钼铅铁铜. 岩矿测试, 2008, 27(3): 235-236.

[2]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[3]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[4]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[5]

朱帅, 沈亚婷, 贾静, 劳昌玲. 液相色谱-高分辨质谱法在中国东北地区农作物有机硒形态分析中的应用. 岩矿测试, 2021, 40(2): 262-272. doi: 10.15898/j.cnki.11-2131/td.202005130070

[6]

刘冬, 贺灵, 文雪琴, 孙彬彬, 曾道明, 吴超, 成晓梦. 金衢盆地典型地区土壤-稻米重金属含量及土壤酸碱度的影响研究. 岩矿测试, 2021, 40(6): 883-893. doi: 10.15898/j.cnki.11-2131/td.202011100139

[7]

曾惠芳, 周绍箕. 三烷基氧膦纤维素富集—感耦等离子体质谱法测定地质样品中钨钼锡. 岩矿测试, 1994, (4): 259-263.

[8]

盛献臻, 张汉萍, 李展强, 李海萍, 何光涛. 电感耦合等离子体发射光谱法同时测定地质样品中次量钨锡钼. 岩矿测试, 2010, 29(4): 383-386.

[9]

王琳, 唐志中, 来新泽, 连文莉, 胡家祯, 周岚. 混合吸附剂分离富集-电感耦合等离子体质谱法测定地质样品中铂钯金. 岩矿测试, 2013, 32(3): 420-426.

[10]

邢智, 漆亮. P507负载泡塑分离-电感耦合等离子体质谱法同时测定化探样品中银钨钼. 岩矿测试, 2014, 33(4): 486-490.

[11]

葛江洪, 王英凯, 张旭, 葛艳梅. 黑龙江省特殊景观区化探土壤样品中钼的相态分析方法及应用. 岩矿测试, 2019, 38(2): 222-227. doi: 10.15898/j.cnki.11-2131/td.201611100206

[12]

刘磊, 杨艳, 彭秀峰, 曹宏杰, 李海明. 微波消解-电感耦合等离子体发射光谱法测定岩石和矿物中的钼. 岩矿测试, 2011, 30(3): 318-320.

[13]

谈建安, 余志峰, 王建波. 电感耦合等离子体发射光谱法测定多金属矿石中的钼. 岩矿测试, 2011, 30(4): 469-472.

[14]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[15]

张保科, 王蕾, 马生凤, 温宏利, 巩爱华. 电感耦合等离子体质谱法测定地质样品中铜锌铕钆铽的干扰及校正. 岩矿测试, 2012, 31(2): 253-257.

[16]

王瑞敏. 泡沫塑料富集-电感耦合等离子体质谱法测定土壤中超痕量金铂钯. 岩矿测试, 2011, 30(3): 295-298.

[17]

吕彩芬, 马新荣, 温宏利, 史世云, 李冰, 何红蓼. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究Ⅰ.不同介质及不同阴离子形态对测定信号的影响. 岩矿测试, 2001, (3): 161-166.

[18]

林守麟, 郑曙. 在线液—淬萃取微型万用分相器的设计和应用Ⅲ.流动注射液—液萃取—电感耦合等离子体原子发射光谱测定矿石中钼和钨. 岩矿测试, 1998, (2): 147-151.

[19]

张晓惠, 侯明轶. 微波诱导等离子体原子发射光谱法测定铍铬钼钒锆锗的研究. 岩矿测试, 1992, (3): 221-224.

[20]

高孝礼, 董丽, 张培新, 黄光明, 周康民, 王冠. 电感耦合等离子体质谱法同时测定地质样品中锗碘. 岩矿测试, 2005, (1): 36-39.

计量
  • PDF下载量(8)
  • 文章访问量(450)
  • HTML全文浏览量(185)
  • 被引次数(0)
目录

Figures And Tables

河南洛阳市土壤和农作物中钼分布规律与影响因素研究

夏炎, 宋延斌, 侯进凯, 赵瑞, 王喜宽