【引用本文】 肖志斌, 耿建珍, 涂家润, 等. 砂岩型铀矿微区原位U-Pb同位素定年技术方法研究[J]. 岩矿测试, 2020, 39(2): 262-273. doi: 10.15898/j.cnki.11-2131/td.201908120129
XIAO Zhi-bin, GENG Jian-zhen, TU Jia-run, et al. In situ U-Pb Isotope Dating Techniques for Sandstone-type Uranium Deposits[J]. Rock and Mineral Analysis, 2020, 39(2): 262-273. doi: 10.15898/j.cnki.11-2131/td.201908120129

砂岩型铀矿微区原位U-Pb同位素定年技术方法研究

1. 

中国地质调查局天津地质调查中心, 天津 300170

2. 

中国地质调查局铀矿地质重点实验室, 天津 300170

收稿日期: 2019-08-12  修回日期: 2019-09-12  接受日期: 2019-10-21

基金项目: 国家重点研发计划“深部矿产资源勘查增储应用示范”重点专项项目(2018YFC0604200);国家重点基础研究发展计划(973计划)项目(2015CB453000);中国地质调查局地质调查项目(DD20190121-13)

作者简介: 肖志斌, 硕士, 工程师, 地球化学专业, 主要从事同位素地质年代学研究。E-mail:zhibin_xiao@163.com

通信作者: 耿建珍, 硕士, 高级工程师, 应用化学专业, 主要从事同位素地质年代学研究。E-mail:mumu1270@163.com

In situ U-Pb Isotope Dating Techniques for Sandstone-type Uranium Deposits

1. 

Tianjin Center of Geological Survey, China Geological Survey, Tianjin 300170, China

2. 

Key Laboratory of Uranium Geology, China Geological Survey, Tianjin 300170, China

Corresponding author: GENG Jian-zhen, mumu1270@163.com

Received Date: 2019-08-12
Revised Date: 2019-09-12
Accepted Date: 2019-10-21

摘要:铀矿物定年一直是成矿年代学中的难点,随着微区原位U-Pb同位素定年技术的发展,可以直接针对矿石矿物(铀矿物)进行同位素定年;但是其中的砂岩型铀矿由于其存在状态复杂,在原位定年中剥蚀要求高,也缺乏合适的外部校正标准物质,所以定年准确度有待提高。本文研究了两种微区原位U-Pb同位素测年的方法,对砂岩型铀矿定年进行了尝试,试图解决铀矿测年中的无基体匹配问题并提高砂岩型铀矿定年水平。一是建立了一种激光剥蚀多接收电感耦合等离子体质谱仪联合电子探针进行微区原位U-Pb同位素测年的技术(LA-MC-ICP-MS&EMPA)。通过优化实验方法,对秦岭陈家庄花岗岩型铀矿进行了测试,获得与同位素稀释热电离质谱法(ID-TIMS)一致的年龄结果,证明了微区原位U-Pb同位素测年无基体匹配标准物质分析的可行性;并利用此法获得鄂尔多斯盆地红庆河和塔然高勒砂岩型铀矿的微区原位U-Pb同位素年龄信息。二是尝试了利用飞秒激光剥蚀多接收电感耦合等离子体质谱法(fsLA-MC-ICP-MS)对红庆河和宁夏宁东砂岩型铀矿样品进行微区原位U-Pb同位素定年,并获得了微区原位U-Pb同位素年龄,表明飞秒激光剥蚀技术在砂岩型铀矿定年中有很好的应用前景。本文提出,比较单一且年龄偏老的单矿物样品可以选择LA-MC-ICP-MS&EMPA联合法进行分析,需要高空间分辨率的样品建议使用fsLA-MC-ICP-MS法。

关键词: 砂岩型铀矿, U-Pb同位素定年, 飞秒激光, 微区原位分析, LA-ICP-MS, EMPA, 无基体匹配

要点

(1) 建立了一种无需基体匹配标准物质的微区原位U-Pb同位素定年的技术方法。

(2) 飞秒激光剥蚀技术在砂岩型铀矿微区原位定年中有很好的应用前景。

(3) 报道了鄂尔多斯盆地周边多个砂岩型铀矿的微区原位U-Pb同位素年龄。

In situ U-Pb Isotope Dating Techniques for Sandstone-type Uranium Deposits

ABSTRACT

BACKGROUND:

Uranium mineral dating has been difficult to ascertain in mineralization chronology. With the development of in situ U-Pb isotope dating technology, it is possible to directly date ore minerals (uranium minerals). However, due to complex occurrences of sandstone-type U deposits, high requirements for laser ablation during in situ dating, and the lack of suitable external calibration standards, the dating accuracy needs to be improved.

OBJECTIVES:

To solve the problem of shortage of reference materials for in situ U-Pb dating of sandstone-type uranium deposit.

METHODS:

Two micro in situ U-Pb isotope dating methods are used for sandstone-type uranium deposits, attempting to solve the problem of no matrix-matched standards and improve the dating technology of sandstone-type uranium deposits. A laser ablation multi-collector inductively coupled plasma-mass spectrometer combined with an electron probe for micro-area in situ U-Pb isotope dating technology was established (LA-MC-ICP-MS & EMPA).

RESULTS:

By optimizing the analytical technique, the Chenjiazhuang granite-type uranium deposit in Qinling was tested, and the ages were consistent with those determined by the isotope dilution-thermoionization mass spectrometry (ID-TIMS), which demonstrated the feasibility of non-matrix matched reference materials for isotope dating. This method was used to data Hongqinghe and Tarangalle sandstone-type uranium deposits in the Ordos Basin. At the same time, in situ U-Pb isotope dating of Hongqinghe and Ningdong sandstone-type uranium samples was carried out by fs-laser ablation multiple-collector inductively coupled plasma-mass spectrometry (fsLA-MC-ICP-MS). In situ U-Pb isotope ages were obtained for these two deposits, indicating that femtosecond laser ablation technology had a good application prospect in the dating of sandstone-type uranium deposits.

CONCLUSIONS:

Combined LA-MC-ICP-MS and EMPA method can be selected for analysis of simple-texture and relatively old minerals, whereas fsLA-MC-ICP-MS method is recommended for samples requiring high spatial resolution.

KEY WORDS: sandstone-type uranium deposits, U-Pb dating, femtosecond laser, in situ analysis, LA-ICP-MS, EMPA, free matrix-matching

HIGHLIGHTS

(1) A technique has been developed for in situ U-Pb isotope dating without matrix-matching reference materials.

(2) fsLA has a good application prospect for in situ U-Pb dating of sandstone-type uranium deposits.

(3) in situ U-Pb ages of several sandstone-type uranium deposits from Ordos basin were reported.

本文参考文献

[1]

胡瑞忠, 温汉捷, 苏文超, 等. 矿床地球化学近十年若干研究进展[J]. 矿物岩石地球化学通报, 2014, 33(2): 127-144. doi: 10.3969/j.issn.1007-2802.2014.02.016

Hu R Z, Wen H J, Su W C, et al. Some advances in ore deposit geochemistry in last decade[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(2): 127-144. doi: 10.3969/j.issn.1007-2802.2014.02.016

[2]

Hu R Z, Fu S L, Huang Y, et al. The giant South China Mesozoic low-temperature metallogenic domain:Reviews and a new geodynamic model[J].Journal of Asian Earth Sciences, 2017, 137: 9-34. doi: 10.1016/j.jseaes.2016.10.016

[3]

周红英, 涂家润, 李国占, 等. 砂岩型铀矿中铀矿物U-Pb年代学研究现状及研究方向[J]. 地学前缘, 2018, 25(6): 290-295.

Zhou H Y, Tu J R, Li G Z, et al. Research on the current status and future of U-Pb chronology study of uranium minerals from the sand[J]. Earth Science Frontiers, 2018, 25(6): 290-295.

[4]

骆金诚, 石少华, 陈佑纬, 等. 铀矿床定年研究进展评述[J]. 岩石学报, 2019, 35(2): 589-605.

Luo J C, Shi S H, Chen Y W, et al. Review on dating of uranium mineralization[J]. Acta Geoscientia Sinica, 2019, 35(2): 589-605.

[5]

Fayek M, Harrison T M, Grove M, et al. A rapid in situ method for determining the ages of uranium oxide minerals:Evolution of the Cigar Lake Deposit, Athabasca Basin[J].International Geology Review, 2000, 42(2): 163-171. doi: 10.1080/00206810009465075

[6]

Fayek M, Kyser T K, Riciputi L R, et al. U and Pb isotope analysis of uranium minerals by ion microprobe and the geochronology of the McArthur River and Sue Zone uranium deposits, Saskatchewan, Canada[J].The Canadian Mineralogist, 2002, 40(6): 1553-1570. doi: 10.2113/gscanmin.40.6.1553

[7]

Chipley D, Polito P A, Kyser T K, et al. Measurement of U-Pb ages of uraninite and davidite by laser ablation-HR-ICP-MS[J].American Mineralogist, 2007, 92(11-12): 1925-1935. doi: 10.2138/am.2007.2226

[8]

Decrée S, Deloule É, De Putter T, et al. SIMS U-Pb dating of uranium mineralization in the Katanga Copperbelt:Constraints for the geodynamic context[J]. Ore Geology Reviews, 2011, 40(1): 81-89.

[9]

Eglinger A, Tarantola A, Durand C, et al. Uranium mobilization by fluids associated with Ca-Na metasomatism:A P-T-t record of fluid-rock interactions during Pan-African metamorphism (Western Zambian Copperbelt)[J].Chemical Geology, 2014, 386: 218-237. doi: 10.1016/j.chemgeo.2014.07.028

[10]

邹东风, 李方林, 张爽, 等. 粤北下庄335矿床成矿时代的厘定——来自LA-ICP-MS沥青铀矿U-Pb年龄的制约[J]. 矿床地质, 2011, 30(5): 912-922. doi: 10.3969/j.issn.0258-7106.2011.05.012

Zou D F, Li F L, Zhang S, et al. Timing of No.335 ore deposit in Xiazhuang uranium orefield, Northern Guangdong Province:Evidence from LA-ICP-MS U-Pb dating of pitchblende[J].Mineral Deposits, 2011, 30(5): 912-922. doi: 10.3969/j.issn.0258-7106.2011.05.012

[11]

宗克清, 陈金勇, 胡兆初, 等. 铀矿fs-LA-ICP-MS原位微区U-Pb定年[J]. 中国科学(地球科学), 2015, 45(9): 1304-1315.

Zong K Q, Chen J Y, Hu Z C, et al. In-situ U-Pb dating of uraninite by fs-LA-ICP-MS[J]. Science China (Earth Sciences), 2015, 45(9): 1304-1315.

[12]

衣龙升, 范宏瑞, 翟明国, 等. 新疆白杨河铍铀矿床萤石Sm-Nd和沥青铀矿U-Pb年代学及其地质意义[J]. 岩石学报, 2016, 32(7): 2099-2110.

Yi L S, Fan H R, Zhai M G, et al. Fluorite Sm-Nd isochron and pitchblende U-Pb dating in the Baiyanghe Be-U deposit, Xinjiang and their geological significances[J]. Acta Petrologica Sinica, 2016, 32(7): 2099-2110.

[13]

Bonnetti C, Liu X, Mercadier J, et al. The genesis of granite- related hydrothermal uranium deposits in the Xiazhuang and Zhuguang ore fields, North Guangdong Province, SE China:Insights from mineralogical, trace elements and U-Pb isotopes signatures of the U mineralisation[J].Ore Geology Reviews, 2018, 92: 588-612. doi: 10.1016/j.oregeorev.2017.12.010

[14]

Martz P, Mercadier J, Perret J, et al. Post-crystallization alteration of natural uraninites:Implications for dating, tracing, and nuclear forensics[J].Geochimica et Cosmochimica Acta, 2019, 249: 138-159. doi: 10.1016/j.gca.2019.01.025

[15]

宋子升.鄂尔多斯盆地杭锦旗砂岩型铀矿成矿年代学及其地质意义[D].西安: 西北大学, 2013.

Song Z S.Metallogenic Chronology and Its Geological Significance in Hangjinqi Sandstone-type Uranium, Ordos Basin[D].Xi'an: Northwest University, 2013.

[16]

寸小妮.鄂尔多斯盆地北部纳岭沟地区砂岩型铀矿成矿年代学及其地质意义[D].西安: 西北大学, 2016.

Cun X N.Metallogenic Chronology and Its Geological Significance in Nalinggou Sandstone-type Uranium, Ordos Basin[D].Xi'an: Northwest University, 2016.

[17]

吴柏林, 张婉莹, 宋子升, 等. 鄂尔多斯盆地北部砂岩型铀矿铀矿物地质地球化学特征及其成因意义[J]. 地质学报, 2016, 90(12): 3393-3407. doi: 10.3969/j.issn.0001-5717.2016.12.009

Wu B L, Zhang W Y, Song Z S, et al. Geological and geochemical characteristics of uranium minerals in the sandstone type uranium deposits in the north of Ordos Basin and their genetic significance[J].Acta Geologica Sinica, 2016, 90(12): 3393-3407. doi: 10.3969/j.issn.0001-5717.2016.12.009

[18]

叶丽娟, 肖志斌, 涂家润, 等. LA-ICPMS与EMPA结合测定铀矿物微区原位U-Pb年龄[J]. 地球学报, 2019, 40(3): 479-482.

Ye L J, Xiao Z B, Tu J R, et al. U-Pb isotopic dating in situ microanalysis of uranium minerals by EMPA and LA-ICPMS[J]. Acta Geoscientica Sinica, 2019, 40(3): 479-482.

[19]

赵溥云, 李喜斌, 营俊龙, 等.沥青铀矿铀铅同位素年龄标准物质[R].北京: 核工业北京地质研究所, 1995.

Zhao P Y, Li X B, Ying J L, et al.Certified Reference Material for U-Pb Isotopic Dating (Pitchblende)[R].Beijing: Beijing Research Institute of Uranium Geology, 1995.

[20]

Yuan F, Jiang S, Liu J, et al. Geochronology and geochemistry of uraninite and coffinite:Insights into ore-forming process in the pegmatite-hosted uraniferous province, North Qinling, Central China[J].Minerals, 2019, 552(9): 1-23.

[21]

Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J].Chemical Geology, 2004, 211(1-2): 47-69. doi: 10.1016/j.chemgeo.2004.06.017

[22]

Suzuki K, Adachi M, Tanaka T, et al. Middle precambrian provenance of Jurassic sandstone in the Mino Terrane, Central Japan:Th-U-total Pb evidence from an electron microprobe monazite study[J]. Sedimentary Geology, 1991, 75(1): 141-147.

[23]

周剑雄, 陈振宇, 芮宗瑶, 等. 独居石的电子探针钍-铀-铅化学测年[J]. 岩矿测试, 2002, 21(4): 241-246. doi: 10.3969/j.issn.0254-5357.2002.04.001

Zhou J X, Chen Z Y, Rui Z Y, et al. Th-U-TPb chemical dating of monazite by electron probe[J]. Rock and Mineral Analysis, 2002, 21(4): 241-246. doi: 10.3969/j.issn.0254-5357.2002.04.001

[24]

张龙, 陈振宇, 田泽瑾, 等. 电子探针测年方法应用于粤北长江岩体的铀矿物年龄研究[J]. 岩矿测试, 2016, 35(1): 98-107.

Zhang L, Chen Z Y, Tian Z J, et al. The application of electron microprobe dating method on uranium minerals in Changjiang Granite, Northern Guangdong[J]. Rock and Mineral Analysis, 2016, 35(1): 98-107.

[25]

徐争启, 欧阳鑫东, 张成江, 等. 电子探针化学测年在攀枝花大田晶质铀矿中的应用及其意义[J]. 岩矿测试, 2017, 36(6): 641-648.

Xu Z Q, Ouyang Y D, Zhang C J, et al. Application of electron microprobe chemical dating to Datian uraninite in Panzhihua and its significance[J]. Rock and Mineral Analysis, 2017, 36(6): 641-648.

[26]

葛祥坤. 电子探针Th-U-Pb微区测年方法及其在铀矿地质研究中的应用前景[J]. 铀矿地质, 2008, 24(3): 175-180. doi: 10.3969/j.issn.1000-0658.2008.03.009

Ge X K. Th-U-Pb dating method of electron probe microanalysis and its application foreground in uranium geology research[J].Uranium Geology, 2008, 24(3): 175-180. doi: 10.3969/j.issn.1000-0658.2008.03.009

[27]

葛祥坤, 秦明宽, 范光, 等. 电子探针化学测年法在晶质铀矿/沥青铀矿定年研究中的应用现状[J]. 世界核地质科学, 2011, 28(1): 55-62.

Ge X K, Qin M K, Fan G, et al. Review on the application of electron microprobe chemical dating method in the age research of uraninite/pitchblende[J]. World Nuclear Geoscience, 2011, 28(1): 55-62.

[28]

葛祥坤.电子探针定年技术在铀及含铀矿物测年中的开发与研究[D].北京: 核工业北京地质研究院, 2013.

Ge X K.Development and Research of EMPA Dating in Uranium Minerals and Other U-bearing Minerals[D].Beijing: Beijing Research Institute of Uranium Geology, 2013.

[29]

Kempe U. Precise electron microprobe age determination in altered uraninite:Consequences on the intrusion age and the metallogenic significance of the Kirchberg Granite (Erzgebirge, Germany)[J]. Contributions to Mineralogy and Petrology, 2003, 145(1): 107-118.

[30]

Jr Hurtado J M, Chatterjee N, Ramezani J, et al.Electron Microprobe Chemical Dating of Uraninite as a Reconnaissance Tool for Leucogranite Geochronology[C]//Nature Preceedings, 2007.

[31]

Škácha P, Goliáš V, Sejkora J, et al. Hydrothermal uranium-base metal mineralization of the Jánská Vein, Březové Hory, Příbram, Czech Republic:Lead isotopes and chemical dating of uraninite[J]. Journal of Geosciences, 2009, 54(1): 1-13.

[32]

Cross A, Jaireth S, Rapp R, et al. Reconnaissance-style EMPA chemical U-Th-Pb dating of uraninite[J].Australian Journal of Earth Sciences, 2011, 58(6): 675-683. doi: 10.1080/08120099.2011.598190

[33]

Yuan H, Gao S, Dai M, et al. Simultaneous determina-tions of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J].Chemical Geology, 2008, 247(1-2): 100-118.

[34]

耿建珍, 张健, 李怀坤, 等. 10μm尺度锆石U-Pb年龄的LA-MC-ICP-MS测定[J]. 地球学报, 2012, 33(6): 877-884.

Geng J Z, Zhang J, Li H K, et al. Ten-micron-sized zircon U-Pb dating using LA-MC-ICP-MS[J]. Acta Geoscientica Sinica, 2012, 33(6): 877-884.

[35]

刘勇胜, 胡兆初, 李明, 等. LA-ICP-MS在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(36): 3753-3769.

Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J]. Chinese Science Bulletin, 2013, 58(36): 3753-3769.

[36]

汪双双, 韩延兵, 李艳广, 等. 利用LA-ICP-MS在16μm和10μm激光束斑条件下测定独居石U-Th-Pb年龄[J]. 岩矿测试, 2016, 35(4): 349-357.

Wang S S, Han Y B, Li Y G, et al. U-Th-Pb dating of monazite by LA-ICP-MS using ablation spot sizes of 16μm and 10μm[J]. Rock and Mineral Analysis, 2016, 35(4): 349-357.

[37]

孙金凤, 杨进辉, 吴福元, 等. 榍石原位微区LA-ICPMS U-Pb年龄测定[J]. 科学通报, 2012, 57(18): 1591-1615.

Sun J F, Yang J H, Wu F Y, et al. In situ U-Pb dating of titanite by LA-ICPMS[J]. Chinese Science Bulletin, 2012, 57(18): 1591-1615.

[38]

Tu J, Xiao Z, Zhou H, et al. U-Pb dating of single-grain uraninite by isotope dilution thermal ionization mass spectrometry[J].Ore Geology Reviews, 2019, 109: 407-412. doi: 10.1016/j.oregeorev.2019.05.001

[39]

Cenki-Tok B, Darling J R, Rolland Y, et al. Direct dating of mid-crustal shear zones with synkinematic allanite:New in situ U-Th-Pb geochronological approaches applied to the Mont Blanc massif[J].Terra Nova, 2014, 26(1): 29-37. doi: 10.1111/ter.12066

[40]

崔玉荣, 周红英, 耿建珍, 等. 氧化物型含铀矿物LA-ICP-MS U-Pb年龄测定中的基体效应及其校正方法[J]. 地质通报, 2015, 34(12): 2325-2333. doi: 10.3969/j.issn.1671-2552.2015.12.018

Cui Y R, Zhou H Y, Geng J Z, et al. The matrix effects in oxide-type U-bearing mineral LA-ICP-MS U-Pb isotopic dating and their correction methods[J].Geological Bulletin of China, 2015, 34(12): 2325-2333. doi: 10.3969/j.issn.1671-2552.2015.12.018

[41]

Liu C, Mao X L, Mao S S, et al. Nanosecond and femto-second laser ablation of brass:Particulate and ICPMS measurements[J]. Analytical Chemistry, 2004, 76(2): 379-383.

[42]

杨文武, 史光宇, 商琦, 等. 飞秒激光剥蚀电感耦合等离子体质谱在地球科学中的应用进展[J]. 光谱学与光谱分析, 2017, 37(7): 2192-2198.

Yang W W, Shi G Y, Shang Q, et al. Applications of femtosecond(fs) laser ablation-inductively coupled plasma-mass spectrometry in Earth sciences[J]. Spectroscopy and Spectral Analysis, 2017, 37(7): 2192-2198.

[43]

Yang Z, Fryer B J, Longerich H P, et al. 785nm femtosecond laser ablation for improved precision and reduction of interferences in Sr isotope analyses using MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2011, 26(2): 341-351. doi: 10.1039/C0JA00131G

[44]

Shaheen M, Fryer B J. Improving the analytical capa-bilities of femtosecond laser ablation multicollector ICP-MS for high precision Pb isotopic analysis:The role of hydrogen and nitrogen[J].Journal of Analytical Atomic Spectrometry, 2010, 25(7): 1006. doi: 10.1039/c003879b

[45]

袁洪林, 殷琮, 刘旭, 等. 飞秒激光剥蚀多接收等离子体质谱分析硫化物中Pb同位素组成研究[J]. 中国科学(地球科学), 2015, 45(9): 1285-1293.

Yuan H L, Yin C, Liu X, et al. High precision in-situ Pb isotopic analysis of sulfide minerals by femtosecond laser ablation multi-collector inductively coupled plasma mass spectrometry[J]. Science China (Earth Sciences), 2015, 45(9): 1285-1293.

[46]

Horn I, von Blanckenburg F, Schoenberg R, et al. In situ iron isotope ratio determination using UV-femtosecond laser ablation with application to hydrothermal ore formation processes[J].Geochimica et Cosmochimica Acta, 2006, 70(14): 3677-3688. doi: 10.1016/j.gca.2006.05.002

[47]

Schuessler J A, von Blanckenburg F. Testing the limits of micro-scale analyses of Si stable isotopes by femtosecond laser ablation multicollector inductively coupled plasma mass spectrometry with application to rock weathering[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2014, 98: 1-18. doi: 10.1016/j.sab.2014.05.002

[48]

向伟东, 方锡珩, 李田港, 等. 鄂尔多斯盆地东胜铀矿床成矿特征与成矿模式[J]. 铀矿地质, 2006, 22(5): 257-266. doi: 10.3969/j.issn.1000-0658.2006.05.001

Xiang W D, Fang X H, Li T G, et al. Metallogenic characteristics and model of Dongsheng uranium deposit in Ordos Basin, North China[J].Uranium Geology, 2006, 22(5): 257-266. doi: 10.3969/j.issn.1000-0658.2006.05.001

[49]

肖志斌, 李惠民, 耿建珍, 等. 铀矿的铀铅同位素年代学研究方法简介[J]. 地质学报, 2015, 89(Supplement): 215-216.

Xiao Z B, Li H M, Geng J Z, et al. Introduction to U-Pb isotope chronology of uranium mineral[J]. Acta Geologica Sinica, 2015, 89(Supplement): 215-216.

相似文献(共16条)

[1]

张伟盟, 严杰, 钟福军, 潘家永, 刘文泉, 赖静, 周堂波. 粤北石角围花岗岩型铀矿床沥青铀矿LA-ICP-MS原位U-Pb定年研究. 岩矿测试, 2019, 38(4): 449-460. doi: 10.15898/j.cnki.11-2131/td.201901160007

[2]

吴石头, 许春雪, Klaus Simon, 肖益林, 王亚平. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究. 岩矿测试, 2017, 36(5): 451-459. doi: 10.15898/j.cnki.11-2131/td.201703290044

[3]

王辉, 汪方跃, 关炳庭, 盛兆秋. 激光能量密度对LA-ICP-MS分析数据质量的影响研究. 岩矿测试, 2019, 38(6): 609-619. doi: 10.15898/j.cnki.11-2131/td.201903010029

[4]

汪双双, 韩延兵, 李艳广, 魏小燕, 靳梦琪, 程秀花. 利用LA-ICP-MS在16 μm和10 μm激光束斑条件下测定独居石U-Th-Pb年龄. 岩矿测试, 2016, 35(4): 349-357. doi: 10.15898/j.cnki.11-2131/td.2016.04.003

[5]

靳梦琪, 李艳广, 王鹏, 汪双双, 黎卫亮. 榍石LA-ICP-MS U-Pb定年中元素分馏的影响及校正研究. 岩矿测试, 2020, 39(2): 274-284. doi: 10.15898/j.cnki.11-2131/td.201908120124

[6]

李阳, 邹灏, 刘行, 蒋修未, 李蝶. SILLS软件在单个萤石流体包裹体LA-ICP-MS微量元素分析数据处理中的应用. 岩矿测试, 2020, 39(2): 300-310. doi: 10.15898/j.cnki.11-2131/td.201812260141

[7]

朱碧, 朱志勇, 吕苗, 杨涛. Iolite软件处理LA-ICP-MS线扫描数据适用性研究. 岩矿测试, 2017, 36(1): 14-21. doi: 10.15898/j.cnki.11-2131/td.2017.01.003

[8]

吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展. 岩矿测试, 2015, 34(5): 503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002

[9]

张莉娟, 安树清, 徐铁民, 张楠, 魏双, 方蓬达. 鄂尔多斯砂岩型铀矿床中灰绿色砂岩还原能力影响因素研究. 岩矿测试, 2018, 37(4): 396-403. doi: 10.15898/j.cnki.11-2131/td.201712180194

[10]

马强, 冯志刚, 孙静, 谢二举, 李小军. 新疆某地浸砂岩型铀矿中铀赋存形态的研究. 岩矿测试, 2012, 31(3): 501-506.

[11]

刘建辉. SHRIMP锆石铀-铅同位素定年中普通铅 204Pb对实验结果的影响. 岩矿测试, 2012, 31(4): 597-601.

[12]

王妍力, 罗明标, 柯麟, 徐志良, 方小伟. 氧化镁烧结-电感耦合等离子体质谱法测定砂岩型铀矿中的痕量铼. 岩矿测试, 2016, 35(4): 373-377. doi: 10.15898/j.cnki.11-2131/td.2016.04.006

[13]

黄国成, 王登红, 吴小勇. 浙江临安夏色岭钨矿含矿岩体特征及LA-ICP-MS锆石铀-铅年代学研究. 岩矿测试, 2012, 31(5): 915-921.

[14]

王家松, 许雅雯, 彭丽娜, 李国占. 应用激光拉曼光谱研究锆石LA-ICP-MS U-Pb定年中的α通量基体效应. 岩矿测试, 2016, 35(5): 458-467. doi: 10.15898/j.cnki.11-2131/td.2016.05.003

[15]

周亮亮, 魏均启, 王芳, 仇秀梅. LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用. 岩矿测试, 2017, 36(4): 350-359. doi: 10.15898/j.cnki.11-2131/td.201701160007

[16]

赵希林, 余明刚, 姜杨, 李亚楠, 靳国栋, 陈志洪, 邢光福. LA-ICP-MS锆石U-Pb同位素定年:对闽北地区稻香组形成时代的制约. 岩矿测试, 2014, 33(6): 892-899.

计量
  • PDF下载量(17)
  • 文章访问量(69)
  • HTML全文浏览量(6)
  • 被引次数(0)
目录

Figures And Tables

砂岩型铀矿微区原位U-Pb同位素定年技术方法研究

肖志斌, 耿建珍, 涂家润, 张然, 叶丽娟, 毕君辉, 周红英