【引用本文】 谢海云, 柳彦昊, 纪翠翠, 等. 铜铅锌混合精矿的矿物学特征分析及分离效率探究[J]. 岩矿测试, 2021, 40(4): 542-549. doi: 10.15898/j.cnki.11-2131/td.202011220152
XIE Hai-yun, LIU Yan-hao, JI Cui-cui, et al. Mineralogical Analysis of Copper-Lead-Zinc Mixed Concentrate and Study on Separation Efficiency[J]. Rock and Mineral Analysis, 2021, 40(4): 542-549. doi: 10.15898/j.cnki.11-2131/td.202011220152

铜铅锌混合精矿的矿物学特征分析及分离效率探究

1. 

昆明理工大学国土资源工程学院, 云南 昆明 650093

2. 

云南铜业矿山研究院, 云南 昆明 650093

收稿日期: 2020-11-12  修回日期: 2021-06-08  接受日期: 2021-07-02

基金项目: 国家自然科学基金项目(52064027)

作者简介: 谢海云, 博士, 副教授, 主要从事矿物加工和湿法冶金研究。E-mail: xie-haiyun@163.com

通信作者: 纪翠翠, 硕士, 高级实验师, 从事矿物加工专业。E-mail: 15887860811@139.com

Mineralogical Analysis of Copper-Lead-Zinc Mixed Concentrate and Study on Separation Efficiency

1. 

Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. 

Yunnan Copper Mine Research Institute, Kunming 650093, China

Corresponding author: JI Cui-cui, 15887860811@139.com

Received Date: 2020-11-12
Revised Date: 2021-06-08
Accepted Date: 2021-07-02

摘要:中国云南省有大量的铜铅锌多金属硫化矿资源,该类矿产资源的高效选矿分离是影响企业经济效益的主要问题之一。针对云南迪庆地区的硫化混合精矿,该混合精矿铜、铅、锌三种有价金属共存,分离难度较大,导致其产品难以销售或冶炼。本文采用化学分析、X射线衍射法和矿物解离度分析(MLA)等多种检测方法,对该混合精矿的主要元素含量、矿物组成、物相组成、主要目的矿物的嵌布特性和单体解离度等进行分析研究。研究结果表明,该混合精矿的粒度较细,各矿物之间存在一定的相互连生或包裹现象,目的矿物黄铜矿、方铅矿和闪锌矿的单体解离度中等偏低,为69.28%~70.56%。初步预测该混合精矿中铜、铅和锌的理论选矿分离效率依次为71.63%、62.97%和72.72%。根据实验分析结果,本文提出进一步提高该混合精矿的磨矿细度促使金属矿物充分解离,是提升铜、铅、锌各矿物选矿分离效率的关键途径。

关键词: 混合精矿, 矿物解离度分析, 单体解离度, 理论分离效率, 工艺矿物学

要点

(1) 利用矿物解离度分析(MLA)等方法对难分离混合精矿进行工艺矿物学研究。

(2) 有价金属矿物嵌布粒度细且单体解离度差是导致云南迪庆地区混合精矿难分离的重要原因。

(3) 通过分析铜铅锌混合精矿的工艺矿物学性质指导铜铅锌混合精矿分离流程。

Mineralogical Analysis of Copper-Lead-Zinc Mixed Concentrate and Study on Separation Efficiency

ABSTRACT

BACKGROUND:

There are large amounts of copper-lead-zinc polymetallic sulfide ore resources in Yunnan Province, China, but the efficient separation of these resources remains a major problem.

OBJECTIVES:

To improve the separation efficiency of valuable minerals in mixed concentrates.

METHODS:

In this study, the major elemental content, phase composition, mineral composition, particle size characteristics, and monomer liberation degree of a mixed concentrate were analyzed using a variety of modern detection methods such as chemical analysis, X-ray diffraction, and mineral liberation analysis (MLA).

RESULTS:

The results showed that the mixed concentrate had fine particles, and some minerals occurred as intergrowths or inclusions. The monomer liberation degree of the target minerals chalcopyrite, galena, and sphalerite was medium to low, ranging from 69.28% to 70.56%. It was preliminarily predicted that the theoretical separation efficiencies of copper, lead, and zinc in the mixed concentrate were 71.63%, 62.97% and 72.72%, respectively.

CONCLUSIONS:

Improving the grinding fineness of mixed concentrates to promote the full liberation of metal minerals is a key way to improve the separation efficiency of copper, lead, and zinc minerals.

KEY WORDS: mixed concentrate, mineral liberation analysis, single liberation degree, theoretical separation efficiency, process mineralogy

HIGHLIGHTS

(1) Mineral liberation analysis (MLA) was used to study the process mineralogy of refractory mixed concentrate.

(2) It was difficult to separate the mixed concentrate because of the fine particles of valuable metal minerals and the low degree of monomer liberation.

(3) The separation process was ascertained by analyzing the mineralogical properties of the copper-lead-zinc mixed concentrate.

本文参考文献

[1]

熊丽青. 试分析地质工作中的地质实验测试技术[J]. 世界有色金属, 2020, (14): 216-217. doi: 10.3969/j.issn.1002-5065.2020.14.099

Xiong L Q. Testing technology of geological experiment in geological analysis[J].World Nonferrous Metals, 2020, (14): 216-217. doi: 10.3969/j.issn.1002-5065.2020.14.099

[2]

温利刚, 贾木欣, 王清, 等. 基于扫描电子显微镜的自动矿物学新技术——BPMA及其应用前景[J]. 有色金属(选矿部分), 2021, (2): 12-23. doi: 10.3969/j.issn.1671-9492.2021.02.003

Wen L G, Jia M M, Wang Q, et al. New automatic mineralogy technology based on scanning electron microscope-BPMA and its application prospect[J].Nonferrous Metals (Mineral Processing Section), 2021, (2): 12-23. doi: 10.3969/j.issn.1671-9492.2021.02.003

[3]

张然, 叶丽娟, 党飞鹏, 等. 自动矿物分析技术在鄂尔多斯盆地砂岩型铀矿矿物鉴定和赋存状态研究中的应用[J]. 岩矿测试, 2021, 40(1): 61-73.

Zhang R, Ye L J, Dang F P, et al. Application of automatic mineral analysis technology in mineral identification and occurrence state study of sandstone type uranium deposits in Ordos Basin[J]. Rock and Mineral Analysis, 2021, 40(1): 61-73.

[4]

曾广圣, 欧乐明. X射线衍射-扫描电镜等技术研究秘鲁铜硫矿石选矿工艺矿物学特征[J]. 岩矿测试, 2019, 38(2): 160-168.

Zeng G S, Ou L M. Mineralogical characteristics of mineral processing technology of Peruvian copper sulfur ore by X-ray diffraction and scanning electron microscopy[J]. Rock and Mineral Analysis, 2019, 38(2): 160-168.

[5]

Dieye M, Lichtervelde M V, Ndiaye A A, et al. Mine-ralogical characterization of heavy mineral concentrates from Senegalese great cost by using QEMSCAN and SEM[J].International Journal of Geosciences, 2020, 11(12): 800-817. doi: 10.4236/ijg.2020.1112041

[6]

Little L, Becker M, Wiese J, et al. Auto-SEM particle shape characterisation: Investigating fine grinding of UG2 ore[J].Minerals Engineering, 2015, 82: 92-100. doi: 10.1016/j.mineng.2015.03.021

[7]

高倩倩, 刘杨, 杨艳芳, 等. MLA与偏光显微镜在工艺矿物学研究中的应用对比[J]. 矿业工程, 2018, (4): 39-40.

Gao Q Q, Liu Y, Yang Y F, et al. Application comparison of MLA and polarizing microscope in process mineralogy research[J]. Mining Engineering, 2018, (4): 39-40.

[8]

陈江安, 邱廷省, 余文, 等. MLA自动检测技术在直接还原铁工艺矿物学研究中的应用[J]. 矿产综合利用, 2018, (1): 86-91. doi: 10.3969/j.issn.1000-6532.2018.01.019

Chen J A, Qiu T S, Yu W, et al. Application of MLA automatic detection technology in direct reduction iron process mineralogy research[J].Mineral Comprehensive Utilization, 2018, (1): 86-91. doi: 10.3969/j.issn.1000-6532.2018.01.019

[9]

白旭, 林伊琳, 文书明, 等. 非洲赞比亚难选混合铜矿工艺矿物学研究[J]. 有色金属(选矿部分), 2021, (3): 15-20. doi: 10.3969/j.issn.1671-9492.2021.03.003

Bai X, Lin Y L, Wen S M, et al. Study on process mineralogy of refractory mixed copper ore in Zambia, Africa[J].Nonferrous Metals (Mineral Processing Section), 2021, (3): 15-20. doi: 10.3969/j.issn.1671-9492.2021.03.003

[10]

胡海祥, 李广. MLA在广东斑岩型锡石矿嵌布特征及赋存状态研究中的应用[J]. 过程工程学报, 2019, 19(5): 1006-1013.

Hu H X, Li G. The application of MLA in the study of dissemination characteristics and occurrence of porphyry cassiterite deposits in Guangdong[J]. Acta Process Engineering, 2019, 19(5): 1006-1013.

[11]

Daley T, Opuni K B, Raj E, et al. Monitoring the process of formation of ZnO from ZnO using combined XRD/XAS technique[J].Journal of Physics: Condensed Matter, 2021, 33(26): 264002. doi: 10.1088/1361-648X/abfb91

[12]

Isabel B. Monte Carlo simulations of electron-sample interactions at phase boundaries and implications for automated mineralogy[J].Minerals Engineering, 2020, 155: 106451. doi: 10.1016/j.mineng.2020.106451

[13]

鱼博, 王宇斌, 王妍, 等. 某铜铅锌多金属硫化矿工艺矿物学研究[J]. 中国钼业, 2021, 45(1): 34-38.

Yu B, Wang Y B, Wang Y, et al. Process mineralogy of a copper lead zinc polymetallic sulfide ore[J]. China Molybdenum Industry, 2021, 45(1): 34-38.

[14]

何丽, 范超, 田颖, 等. X射线粉晶衍射法结合运用于岩矿鉴定的薄弱部分——隐晶质岩石[J]. 中国锰业, 2017, 35(6): 132-135.

He L, Fan C, Tian Y, et al. The weak part of X-ray powder diffraction in rock and mineral identification: Cryptocrystalline rocks[J]. China's Manganese Industry, 2017, 35(6): 132-135.

[15]

杜丽娟. 滇西北羊拉铜矿床热液体系演化与成矿机制研究[D]. 北京: 中国科学院大学, 2017.

Du L J. Hydrothermal system evolution and metallogenic mechanism of Yangla copper deposit in Northwest Yunnan[D]. Beijing: University of Chinese Academy of Sciences, 2017.

[16]

刘榕鑫, 朱坤, 谢海云, 等. 云南斑岩型多金属金矿的嵌布特征及赋存状态研究[J]. 岩矿测试, 2018, 37(4): 404-410.

Liu R X, Zhu K, Xie H Y, et al. Study on the distribution characteristics and occurrence state of porphyry polymetallic gold deposits in Yunnan Province[J]. Rock and Mineral Analysis, 2018, 37(4): 404-410.

[17]

孙晓华, 付强, 应永朋, 等. 青海某低品位铜铅锌银多金属矿工艺矿物学研究[J]. 有色金属(选矿部分), 2020, (5): 5-10. doi: 10.3969/j.issn.1671-9492.2020.05.002

Sun X H, Fu Q, Ying Y P, et al. Process mineralogy of a low grade Cu Pb Zn Ag polymetallic ore in Qinghai[J].Nonferrous Metals (Mineral Processing Section), 2020, (5): 5-10. doi: 10.3969/j.issn.1671-9492.2020.05.002

[18]

刘守信, 师伟红. 新疆某低品位铜铅锌多金属硫化矿浮选分离试验研究[J]. 有色金属(选矿部分), 2021, (2): 93-97. doi: 10.3969/j.issn.1671-9492.2021.02.015

Liu S X, Shi W H. Experimental study on flotation separation of a low grade copper-lead-zinc polymetallic sulfide ore in Xinjiang[J].Nonferrous Metals (Mineral Processing Section), 2021, (2): 93-97. doi: 10.3969/j.issn.1671-9492.2021.02.015

[19]

肖炜, 田小松. 云南迪庆铜铅锌硫化矿浮选分离研究[J]. 矿产综合利用, 2020, 18(1): 65-70. doi: 10.3969/j.issn.1000-6532.2020.01.014

Xiao W, Tian X S. Study on flotation separation of Diqing copper lead zinc sulfide ore in Yunnan[J].Mineral Comprehensive Utilization, 2020, 18(1): 65-70. doi: 10.3969/j.issn.1000-6532.2020.01.014

[20]

吴继宗, 谢海云, 田小松, 等. 高硫铜锌矿的全混浮-再磨脱硫及铜锌分离[J]. 有色金属工程, 2019, 9(7): 65-71. doi: 10.3969/j.issn.2095-1744.2019.07.011

Wu J Z, Xie H Y, Tian X S, et al. Desulfurization and separation of copper and zinc from high sulfur copper zinc ores by total flotation regrinding[J].Nonferrous Metals Engineering, 2019, 9(7): 65-71. doi: 10.3969/j.issn.2095-1744.2019.07.011

[21]

曾令明, 欧乐明. 某硫化锌矿浮选新工艺及工艺矿物学特性分析[J]. 中国有色金属学报, 2018, 28(9): 1867-1875.

Zeng L M, Ou L M. Analysis of new flotation process and process mineralogical characteristics of a zinc sulfide ore[J]. Acta Nonferrous Metals of China, 2018, 28(9): 1867-1875.

[22]

Pszonka J, Schulz B, Sala D, et al. Application of mineral liber-ation analysis (MLA) for investigations of grain size distribution in submarine density flow deposits[J].Marine and Petroleum Geology, 2021, 129: 105109. doi: 10.1016/j.marpetgeo.2021.105109

[23]

Huimin W U, Junping W, Shuang Z, et al. Application of MLA system in analysis of non-metallic inclusions of stainless steel[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2020, 56(7): 18-21.

[24]

Al-Khirbash S A. Mineralogical characterization of low-grade nickel laterites from the North Oman Mountains: Using mineral liberation analyses-scanning electron microscopy-based automated quantitative mineralogy[J]. Ore Geology Reviews120: 1034229.

[25]

荆晓雷, 郑桂兵, 任爱军, 等. 低品位铜铅锌铁复杂多金属资源清洁高效综合利用技术研究与应用[J]. 世界有色金属, 2018, (10): 126-128.

Jing X L, Zheng G B, Ren A J, et al. Research and application of clean and efficient comprehensive utilization technology of low grade copper, lead, zinc and iron complex polymetallic resources[J]. World Nonferrous Metals, 2018, (10): 126-128.

[26]

吴中贤, 陶东平. 云南某胶磷矿AMICS工艺矿物学研究及其难选机理探讨[J]. 工程科学学报, 2021, 43(4): 503-511.

Wu Z X, Tao D P. Research on AMICS process mineralogy of a collophanite in Yunnan and discussion on its refractory mechanism[J]. Chinese Journal of Engineering, 2021, 43(4): 503-511.

[27]

Mafra C, Bouzahzah H, Stamenov L, et al. Insights on the effect of pyrite liberation degree upon the acid mine drainage potential of sulfide flotation tailings[J]. Applied Geochemistry, 2020, 123(2): 104774.

[28]

Xie H Y, Liu Y H, Rao B, et al. Selective passivation behavior of galena surface by sulfuric acid and a novel dlotation separation method for copper-lead sulfide ore without collector and inhibitor[J].Separation and Purification Technology, 2021, 267: 118621. doi: 10.1016/j.seppur.2021.118621

[29]

Kursunoglu S, Top S, Kaya M, et al. Recovery of zinc and lead from Yahyali non-sulphide flotation tailing by sequential acidic and sodium hydroxide leaching in the presence of potassium sodium tartrate[J].Transactions of Nonferrous Metals Society of China, 2020, 30(12): 3367-3378. doi: 10.1016/S1003-6326(20)65468-1

[30]

Xie H Y, Sun S, Wu J Z, et al. A case study of enhanced sulfidization flotation of lead oxide ore: Influence of depressants[J]. Minerals, 2020, 10(2): 95.

相似文献(共20条)

[1]

彭艳华, 彭光菊, 贾利攀, 周卫宁. 湖南宝山铅锌矿西部矿带银的工艺矿物学研究. 岩矿测试, 2013, 32(5): 729-737.

[2]

伍超群. 电子探针在工艺矿物学中的应用. 岩矿测试, 1994, (1): 45-48.

[3]

曾广圣, 欧乐明. X射线衍射-扫描电镜等技术研究秘鲁铜硫矿石选矿工艺矿物学特征. 岩矿测试, 2019, 38(2): 160-168. doi: 10.15898/j.cnki.11-2131/td.201804130042

[4]

谢海云, 叶群杰, 周平, 高利坤, 庄故章, 童雄. 云南思茅地区铜锌硫化矿工艺矿物学分析. 岩矿测试, 2014, 33(3): 350-357.

[5]

闫晔轶, 胡家菊. 硫化汞锑矿汞锑分离降铬工艺试验研究. 岩矿测试, 2000, (3): 224-227.

[6]

刘榕鑫, 朱坤, 谢海云, 张鹏飞, 丁超, 吴继宗, 童雄. 云南斑岩型多金属金矿的嵌布特征及赋存状态研究. 岩矿测试, 2018, 37(4): 404-410. doi: 10.15898/j.cnki.11-2131/td.201710200169

[7]

吕宪俊, 范海宝, 邱俊, 张言贵, 曹旭. 胶东蚀变岩型金矿石工艺矿物学性质研究. 岩矿测试, 2012, 31(1): 184-188.

[8]

闵红, 刘倩, 张金阳, 周海明, 严德天, 邢彦军, 李晨, 刘曙. X射线荧光光谱-X射线粉晶衍射-偏光显微镜分析12种产地铜精矿矿物学特征. 岩矿测试, 2021, 40(1): 74-84. doi: 10.15898/j.cnki.11-2131/td.202004020038

[9]

胡海祥, 范作鹏, 牛桂强, 刘洪澜, 刘海龙, 王攀志. 焦家金矿选厂旋流器溢流产品工艺矿物学分析. 岩矿测试, 2014, 33(4): 535-544.

[10]

余晓艳. 山东蓝宝石的宝石矿物学特征. 岩矿测试, 1999, (1): 41-.

[11]

侯梅芳, , 马北雁. 我国各地膨润土的矿物学性质. 岩矿测试, 2002, (3): 190-194.

[12]

廖宗廷, 周征宇, 李玉加, 陈盈, 马婷婷. 青海软玉的岩石矿物学特征. 岩矿测试, 2008, 27(1): 17-20.

[13]

陈爱清, 薛雍, 徐洪柳, 李国武. Rietveld定量方法在蒸发岩矿物组分分析中的精确度评价和误差来源. 岩矿测试, 2017, 36(4): 374-381. doi: 10.15898/j.cnki.11-2131/td.201608020111

[14]

王福泉. 江苏某含铬镁铝榴石的宝石矿物学研究. 岩矿测试, 1984, (1): 33-39.

[15]

张荣英, 王月翠, 彭志忠. 富硒硫银锗矿的矿物学研究. 岩矿测试, 1984, (2): 124-130.

[16]

周鸿勳. 北京密云半截峪一带太古代变质铁矿的成因矿物学. 岩矿测试, 1983, (3): 197-205.

[17]

江秀杰, 刘金定, 王义昌, 黄典豪. 黄龙铺钡天青石的矿物学研究及其意义. 岩矿测试, 1983, (2): 118-124.

[18]

叶大年. 环状硅酸盐的结构光性矿物学研究. 岩矿测试, 1983, (1): 25-34.

[19]

邢莹莹, 亓利剑, 王海涛. 秘鲁蓝色蛋白石矿物学性质及致色机理初探. 岩矿测试, 2017, 36(6): 608-613. doi: 10.15898/j.cnki.11-2131/td.201707250121

[20]

宋彦军, 李甘雨, 张健, 陶隆凤, 刘云贵, 张璐. 黄绿色明矾石玉的矿物学特征及颜色成因研究. 岩矿测试, 2020, 39(5): 709-719. doi: 10.15898/j.cnki.11-2131/td.202003160036

计量
  • PDF下载量(3)
  • 文章访问量(1005)
  • HTML全文浏览量(34)
  • 被引次数(0)
目录

Figures And Tables

铜铅锌混合精矿的矿物学特征分析及分离效率探究

谢海云, 柳彦昊, 纪翠翠, 晋艳玲, 张培, 田小松, 刘榕鑫