【引用本文】 伊芹, 程皝, 尚文郁, . 土壤硒的存在特征及分析测试技术研究进展[J]. 岩矿测试, 2021, 40(4): 461-475. doi: 10.15898/j.cnki.11-2131/td.202006230095
YI Qin, CHENG Huang, SHANG Wen-yu. Review on Characteristics of Selenium in Soil and Related Analytical Techniques[J]. Rock and Mineral Analysis, 2021, 40(4): 461-475. doi: 10.15898/j.cnki.11-2131/td.202006230095

土壤硒的存在特征及分析测试技术研究进展

1. 

国家地质实验测试中心, 北京 100037

2. 

北京航天威科环保科技有限公司, 北京 100071

收稿日期: 2020-06-23  修回日期: 2021-01-04  接受日期: 2021-01-26

基金项目: 中国地质调查局地质调查项目(DD20190323);中国地质调查局中国地质科学研究院基本科研业务费项目(CJYYWF20182602)

作者简介: 伊芹, 博士, 助理研究员, 主要从事土壤岩石矿物分析。E-mail: yiyiustb@163.com

Review on Characteristics of Selenium in Soil and Related Analytical Techniques

1. 

National Research Center for Geoanlysis, Beijing 100037, China

2. 

Beijing Aerospace WKS Environmental Technology Co., LTD, Beijing 100071, China

Received Date: 2020-06-23
Revised Date: 2021-01-04
Accepted Date: 2021-01-26

摘要:硒是重要的生命健康微量元素之一,土壤硒的空间异质性是造成各种病害和环境问题的主要原因。全球土壤硒分布不均匀,大部分属于低硒土壤,土壤硒含量平均值为0.4mg/kg,典型高硒地区土壤硒含量为346~2018mg/kg。准确分析土壤硒含量是开展土壤硒研究的基础,土壤样品来源特征和硒存在形式是土壤硒分析测试方法的选择依据,合理使用标准物质能够有效监控分析质量。本文阐述了土壤硒的主要来源、分布特征和存在形式,总结了近年来土壤硒形态提取方法、硒含量分析技术研究进展和土壤硒标准物质研制现状。指出当前对硒迁移转化机理研究尚不完善,分步提取态的提出为研究土壤硒形态分布和迁移转化提供了新途径,但因未能完全解决提取专一性和提取过程中硒形态转化的问题,该方法仍在进一步发展。光谱技术尤其是原子荧光光谱是中国分析土壤硒含量的主流方法;高精密度、低检出限的质谱技术,以及具备原位形态分析能力的同步辐射X射线技术,在超痕量分析和形态分析领域具有显著优势。针对当前具有硒含量定值的土壤标准物质能覆盖的土壤基体和硒含量的范围有限,本文提出有待加强研制具备硒梯度含量变化和硒形态含量定值的系列标准物质,以满足分析质量监控需求。

关键词: 土壤, , 形态, 定量分析, 标准物质

要点

(1) 土壤硒含量通常较低,且动态变化。

(2) 高灵敏度、低检出限分析技术是土壤硒分析领域硬性需求。

(3) 迫切需要研制能够涵盖更多基体类型和具有硒形态含量定值的标准物质。

Review on Characteristics of Selenium in Soil and Related Analytical Techniques

ABSTRACT

BACKGROUND:

Selenium is an essential micronutrient for humans. The spatial heterogeneity of selenium in soil is the main cause of various diseases and environmental problems. Selenium in soil is unevenly distributed across the globe, with most soils being low in selenium. Globally, the average selenium content in soil is 0.4mg/kg, while it is 346-2018mg/kg in typical high-selenium areas. Thus, accurate analysis of selenium in soil is of great significance in research on seleniferous soil. The reasonable use of reference materials can aid in the effective monitoring of the quality of analysis.

OBJECTIVES:

To summarize the status of research on selenium in soil, and the development of the corresponding analytical methods and reference materials.

METHODS:

This article describes the distribution characteristics, speciation, and migration and transformation characteristics of selenium in soil. Furthermore, the methods for extracting selenium speciation in soil, the progress of research on selenium content analysis technology, and the status of the development of soil selenium reference materials in recent years are summarized.

RESULTS:

Because of limited advancements in the development of analytical techniques, research on the mechanism of migration and transformation is still incomplete. The emergence of sequential extraction techniques provides a new way to study the distribution, migration, and transformation of soil selenium speciation. However, this method is still under development and has many shortcomings, such as inadequate selectivity and inevitable speciation transformation. Atomic fluorescence spectroscopy is the mainstream approach for the analysis of selenium content in soil, especially in China. Mass spectrometry, with high precision and a low detection limit, and synchrotron radiation X-ray technology, with in-situ speciation analysis capabilities, offer significant advantages in the analysis of trace and ultra-trace elements and speciation analysis. There is a significant gap in the research on reference materials with gradient content and certified speciation content.

CONCLUSIONS:

Methods with a low detection limit, high sensitivity, and matrix interference resistance are urgently needed. The combined application of sequential extraction, mass spectrometry, and X-ray fluorescence can promote research on selenium in soil. Moreover, related certified reference materials with gradient content and certified speciation content are in short supply.

KEY WORDS: soil, selenium, speciation, quantitative analysis, reference material

HIGHLIGHTS

(1) The selenium content in most soils in the world is ultra-low and varies with the environment.

(2) Methods with high sensitivity and a low detection limit are a basic requirement.

(3) Reference materials with gradient content and certified speciation content of selenium are urgently needed.

本文参考文献

[1]

Banning H, Stelling M, Konig S, et al. Preparation and purification of organic samples for selenium isotope studies[J]. PLoS ONE, 2018, 13(3): 1-19.

[2]

Ali J, Tuzen M, Feng X, et al. Determination of trace levels of selenium in natural water, agriculture soil and food samples by vortex assisted liquid-liquid microextraction method: Multivariate techniques[J]. Food Chemistry, 2021, 344: 1-7.

[3]

Araujo A M, Lessa J H D L, Lima F R D D, et al. Adsorption of selenite in tropical soils as affected by soil management, ionic strength, and soil properties[J].Journal of Soil Science and Plant Nutrition, 2020, 20(1): 139-148. doi: 10.1007/s42729-019-00107-x

[4]

Mansur E T, Barnes S-J, Savard D, et al. Determination of Te, As, Bi, Sb and Se (TABS) in geological reference materials and GeoPT proficiency test materials by hydride generation-atomic fluorescence spectrometry (HF-AFS)[J].Geostandards and Geoanalytical Research, 2020, 44(1): 147-167. doi: 10.1111/ggr.12289

[5]

Etteieb S, Magdouli S, Zolfaghari M, et al. Monitoring and analysis of selenium as an emerging contaminant in mining industry: A critical review[J]. Science of The Total Environment, 2020, 698: 1-14.

[6]

Tabelin C B, Igarashi T, Villacorte-Tabelin M, et al. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies[J].Science of The Total Environment, 2018, 645: 1522-1553. doi: 10.1016/j.scitotenv.2018.07.103

[7]

Wen H, Carignan J. Reviews on atmospheric selenium: Emissions, speciation and fate[J].Atmospheric Environment, 2007, 41(34): 7151-7165. doi: 10.1016/j.atmosenv.2007.07.035

[8]

Liu Y, Tian X, Liu R, et al. Key driving factors of selenium-enriched soil in the low-Se geological belt: A case study in Red Beds of Sichuan Basin, China[J]. Catena, 2021, 196: 1-12.

[9]

Wadgaonkar S L, Nancharaiah Y V, Esposito G, et al. Environmental impact and bioremediation of seleniferous soils and sediments[J].Critical Reviews in Biotechnology, 2018, 38(6): 941-956. doi: 10.1080/07388551.2017.1420623

[10]

Wang Q Q, Yu S C, Xu C D, et al. Association between selenium in soil and diabetes in Chinese residents aged 35-74 years: Results from the 2010 national survey of chronic diseases and behavioral risk factors surveillance[J].Biomedical and Environmental Sciences, 2020, 33(4): 260-268.

[11]

Xiao K, Tang J, Chen H, et al. Impact of land use/land cover change on the topsoil selenium concentration and its potential bioavailability in a Karst area of southwest China[J]. Science of The Total Environment, 2020, 708: 1-8.

[12]

秦海波, 朱建明. 中国典型高硒区硒的环境地球化学研究进展[J]. 生物技术进展, 2017, 7(5): 367-373.

Qin H B, Zhu J M. Progress on environmental geochemistry of selenium in typical high-Se areas in China[J]. Current Biotechnology, 2017, 7(5): 367-373.

[13]

Winkel L H E, Vriens B, Jones G D, et al. Selenium cycling across soil-plant-atmosphere interfaces: A critical review[J].Nutrients, 2015, 7(6): 4199-4239. doi: 10.3390/nu7064199

[14]

Floor G H, Román-Ross G. Selenium in volcanic environments: A review[J].Applied Geochemistry, 2012, 27(3): 517-531. doi: 10.1016/j.apgeochem.2011.11.010

[15]

Fernández-Martínez A, Charlet L. Selenium environmental cycling and bioavailability: A structural chemist point of view[J].Reviews in Environmental Science and Bio/Technology, 2009, 8(1): 81-110. doi: 10.1007/s11157-009-9145-3

[16]

Statwick J, Sher A A. Selenium in soils of western Colorado[J].Journal of Arid Environments, 2017, 137: 1-6. doi: 10.1016/j.jaridenv.2016.10.006

[17]

Armstrong J G T, Parnell J, Bullock L A, et al. Mobilisation of arsenic, selenium and uranium from Carboniferous black shales in West Ireland[J]. Applied Geochemistry, 2019, 109: 1-13.

[18]

Parnell J, Brolly C, Spinks S, et al. Selenium enrichment in Carboniferous shales, Britain and Ireland: Problem or opportunity for shale gas extraction?[J].Applied Geochemistry, 2016, 66: 82-87. doi: 10.1016/j.apgeochem.2015.12.008

[19]

Tuttle M L W, Fahy J W, Elliott J G, et al. Contaminants from cretaceous black shale: Ⅱ.Effect of geology, weathering, climate, and land use on salinity and selenium cycling, Mancos Shale landscapes, southwestern United States[J].Applied Geochemistry, 2014, 46: 72-84. doi: 10.1016/j.apgeochem.2013.12.011

[20]

周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319-336.

Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319-336.

[21] Pilon-Smits E,Winkel L,Lin Z Q. Selenium in plants, Cham[M] . : Springer International Publishing, 2017
[22]

谈加香, 冯朝军, 耿丽婵, 等. 氢化物发生-原子荧光光谱法测定土壤中水溶性硒含量[J]. 化工管理, 2017, (22): 50-52. doi: 10.3969/j.issn.1008-4800.2017.22.047

Tan J X, Feng C J, Geng L C, et al. Determination of water-soluble selenium in soil by hydride generation-atomic fluorescence spectrometry[J].Chemical Management, 2017, (22): 50-52. doi: 10.3969/j.issn.1008-4800.2017.22.047

[23]

Dinh Q T, Cui Z, Huang J, et al. Selenium distribution in the Chinese environment and its relationship with human health: A review[J].Environment International, 2018, 112: 294-309. doi: 10.1016/j.envint.2017.12.035

[24]

He K Q, Yuan C G, Shi M D, et al. Accelerated scre-ening of arsenic and selenium fractions and bioavailability in fly ash by microwave assistance[J]. Ecotoxicology and Environmental Safety, 2020, 187: 1-8.

[25]

Gebreeyessus G D, Zewge F. A review on environmental selenium issues[J].SN Applied Sciences, 2018, 1(1): 55-74.

[26]

Myers T. Remediation scenarios for selenium contamination, blackfoot watershed, southeast Idaho, USA[J].Hydrogeology Journal, 2013, 21(3): 655-671. doi: 10.1007/s10040-013-0953-8

[27]

Bajaj M, Eiche E, Neumann T, et al. Hazardous con-centrations of selenium in soil and groundwater in North-West India[J].Journal of Hazardous Materials, 2011, 189(3): 640-646. doi: 10.1016/j.jhazmat.2011.01.086

[28]

Cao S, Duan X, Zhao X, et al. Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China[J].Science of The Total Environment, 2014, 472: 1001-1009. doi: 10.1016/j.scitotenv.2013.11.124

[29]

LeBlanc K L, Kumkrong P, Mercier P H J, et al. Selenium analysis in waters.Part 2:Speciation methods[J].Science of The Total Environment, 2018, 640-641: 1635-1651. doi: 10.1016/j.scitotenv.2018.05.394

[30]

Bailey R T. Review: Selenium contamination, fate, and reactive transport in groundwater in relation to human health[J].Hydrogeology Journal, 2017, 25: 1191-1217. doi: 10.1007/s10040-016-1506-8

[31]

Vinceti M, Crespi C M, Bonvicini F, et al. The need for a reassessment of the safe upper limit of selenium in drinking water[J].Science of The Total Environment, 2013, 443: 633-642. doi: 10.1016/j.scitotenv.2012.11.025

[32]

Xu Y, Li Y, Li H, et al. Effects of topography and soil properties on soil selenium distribution and bioavailability (phosphate extraction): A case study in Yongjia County, China[J].Science of The Total Environment, 2018, 633: 240-248. doi: 10.1016/j.scitotenv.2018.03.190

[33]

Smažíková P, Praus L, Száková J, et al. Effects of organic matter-rich amendments on selenium mobility in soils[J].Pedosphere, 2019, 29(6): 740-751. doi: 10.1016/S1002-0160(17)60444-2

[34]

Ma B, Fernandez-Martinez A, Grangeon S, et al. Selenite uptake by Ca-Al LDH: A description of intercalated anion coordination geometries[J]. Environmental Science & Technology, 2018, 52(3): 1624-1632.

[35]

Ullah H, Liu G, Yousaf B, et al. A comprehensive review on environmental transformation of selenium: Recent advances and research perspectives[J].Environmental Geochemistry and Health, 2019, 41(2): 1003-1035. doi: 10.1007/s10653-018-0195-8

[36]

Fan J, Zeng Y, Sun J, et al. The transformation and migration of selenium in soil under different Eh conditions[J].Journal of Soils and Sediments, 2018, 18(9): 2935-2947. doi: 10.1007/s11368-018-1980-9

[37]

Kopittke P M, Wang P, Lombi E, et al. Synchrotron-based X-ray approaches for examining toxic trace metal(loid)s in soil-plant systems[J].Journal of Environmental Quality, 2017, 46(6): 1175-1189. doi: 10.2134/jeq2016.09.0361

[38]

Reynolds R J B, Jones R R, Heiner J, et al. Effects of selenium hyperaccumulators on soil selenium distribution and vegetation properties[J].American Journal of Botany, 2020, 107(7): 970-982. doi: 10.1002/ajb2.1500

[39]

Tan L C, Nancharaiah Y V, van Hullebusch E D, et al. Selenium: Environmental significance, pollution, and biological treatment technologies[J].Biotechnology Advances, 2016, 34(5): 886-907. doi: 10.1016/j.biotechadv.2016.05.005

[40]

Shaheen S M, Kwon E E, Biswas J K, et al. Arsenic, chromium, molybdenum, and selenium: Geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt[J].Chemosphere, 2017, 180: 553-563. doi: 10.1016/j.chemosphere.2017.04.054

[41]

Natasha , Shahid M, Niazi N K, et al. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health[J].Environmental Pollution, 2018, 234: 915-934. doi: 10.1016/j.envpol.2017.12.019

[42]

Tessier A P, Campbell P G C, Bisson M X, et al. Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017

[43]

Fernández-Ondoño E, Bacchetta G, Lallena A M, et al. Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia[J].Journal of Geochemical Exploration, 2017, 172: 133-141. doi: 10.1016/j.gexplo.2016.09.013

[44]

Shaheen S M, Ali R A, Abowaly M E, et al. Assessing the mobilization of As, Cr, Mo, and Se in Egyptian lacustrine and calcareous soils using sequential extraction and biogeochemical microcosm techniques[J].Journal of Geochemical Exploration, 2018, 191: 28-42. doi: 10.1016/j.gexplo.2018.05.003

[45]

王亚平, 黄毅, 王苏明, 等. 土壤和沉积物中元素的化学形态及其顺序提取法[J]. 地质通报, 2005, 24(8): 728-734. doi: 10.3969/j.issn.1671-2552.2005.08.009

Wang Y P, Huang Y, Wang S M, et al. Chemical speciation of elements in sediments and soil and their sequential extraction process[J].Geological Bulletin of China, 2005, 24(8): 728-734. doi: 10.3969/j.issn.1671-2552.2005.08.009

[46]

Fan J, Zhao G, Sun J, et al. Effect of humic acid on Se and Fe transformations in soil during waterlogged incubation[J].Science of The Total Environment, 2019, 684: 476-485. doi: 10.1016/j.scitotenv.2019.05.246

[47]

Qin H B, Zhu J M, Lin Z Q, et al. Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy[J].Environmental Pollution, 2017, 225: 361-369. doi: 10.1016/j.envpol.2017.02.062

[48]

唐沫岚, 鲍征宇, 范博伦, 等. 顺序提取分离-氢化物发生-原子荧光光谱法测定富硒土壤中5种形态硒的含量[J]. 理化检验(化学分册), 2018, 54(4): 408-412.

Tang M L, Bao Z Y, Fan B L, et al. HG-AFS speciation analysis for 5 species of selenium in Se-rich soil with separation by sequential extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(4): 408-412.

[49]

Wang D, Dinh Q T, Thu T T A, et al. Effect of selenium-enriched organic material amendment on selenium fraction transformation and bioavailability in soil[J].Chemosphere, 2018, 199: 417-426. doi: 10.1016/j.chemosphere.2018.02.007

[50]

Favorito J E, Luxton T P, Eick M J, et al. Selenium speciation in phosphate mine soils and evaluation of a sequential extraction procedure using XAFS[J].Environmental Pollution, 2017, 229: 911-921. doi: 10.1016/j.envpol.2017.07.071

[51]

Wang M, Cui Z, Xue M, et al. Assessing the uptake of selenium from naturally enriched soils by maize (Zea mays L.) using diffusive gradients in thin-films technique (DGT) and traditional extractions[J].Science of The Total Environment, 2019, 689: 1-9. doi: 10.1016/j.scitotenv.2019.06.346

[52]

秦冲, 施畅, 万秋月, 等. 高效液相色谱-电感耦合等离子体质谱联用检测土壤中的无机硒形态[J]. 岩矿测试, 2018, 37(6): 664-670.

Qin C, Shi C, Wan Q Y, et al. Speciation analysis of inorganic selenium in soil by high performance liquid chromatography-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2018, 37(6): 664-670.

[53]

Dodd J, Large D J, Fortey N J, et al. A petrographic investigation of two sequential extraction techniques applied to anaerobic canal bed mud[J]. Environmental Geochemistry & Health, 2000, 22(4): 281-296.

[54]

Shaltout A A, Castilho I N B, Welz B, et al. Method development and optimization for the determination of selenium in bean and soil samples using hydride generation electrothermal atomic absorption spectrometry[J].Talanta, 2011, 85(3): 1350-1356. doi: 10.1016/j.talanta.2011.06.015

[55]

Busheina I S, Abobaker M M, Aljurmi E S, et al. Determination of selenium in environmental samples using hydride generation coupled to atomic absorption spectroscopy[J]. Journal of Environmental Analytical Chemistry, 2016, 3(2): 1-5.

[56]

Schneider M, Pereira É R, Castilho I N B, et al. A simple sample preparation procedure for the fast screening of selenium species in soil samples using alkaline extraction and hydride-generation graphite furnace atomic absorption spectrometry[J].Microchemical Journal, 2016, 125: 50-55. doi: 10.1016/j.microc.2015.10.018

[57]

Carvalho G S, Oliveira J R, Curi N, et al. Selenium and mercury in Brazilian Cerrado soils and their relationships with physical and chemical soil characteristics[J].Chemosphere, 2019, 218: 412-415. doi: 10.1016/j.chemosphere.2018.11.099

[58]

韩亚, 郭伟, 汪洪, 等. 电感耦合等离子体质谱(ICP-MS)法与氢化物发生-原子吸收光谱(HG-AAS)法测定土壤中硒含量的对比研究[J]. 中国无机分析化学, 2020, 10(3): 28-32. doi: 10.3969/j.issn.2095-1035.2020.03.006

Han Y, Guo W, Wang H, et al. Method comparison for determination of selenium in soil by ICP-MS and HG-AAS[J].Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(3): 28-32. doi: 10.3969/j.issn.2095-1035.2020.03.006

[59]

Castilho I N B, Pereira É R, Welz B, et al. Determination of selenium in soil samples using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis[J].Analytical Methods, 2014, 6(9): 2870-2875. doi: 10.1039/C3AY42227E

[60]

Lessa J H L, Araujo A M, Silva G N T, et al. Adsorption-desorption reactions of selenium(Ⅵ) in tropical cultivated and uncultivated soils under Cerrado biome[J].Chemosphere, 2016, 164: 271-277. doi: 10.1016/j.chemosphere.2016.08.106

[61]

钱薇, 唐昊冶, 王如海, 等. 一次消解土壤样品测定汞、砷和硒[J]. 分析化学, 2017, 45(8): 1215-1221.

Qian W, Tang H Y, Wang R H, et al. Determination of mercury, arsenic and selenium in soil by one-time digestion[J]. Chinese Journal of Analytical Chemistry, 2017, 45(8): 1215-1221.

[62]

李美秀, 齐少华. 微波消解-双通道原子荧光光谱法同时测定土壤中的硒和锑[J]. 化学分析计量, 2018, 27(6): 81-86. doi: 10.3969/j.issn.1008-6145.2018.06.019

Li M X, Qi S H. Simultaneous determination of selenium and antimony in soil by microwave digestion and double channel atomic fluorescence spectrometry[J].Chemical Analysis and Meterage, 2018, 27(6): 81-86. doi: 10.3969/j.issn.1008-6145.2018.06.019

[63]

温晓华, 邵超英, 张琢, 等. 悬浮液进样-氢化物发生原子荧光光谱法测定土壤中痕量砷锑硒[J]. 岩矿测试, 2007, 26(6): 460-464. doi: 10.3969/j.issn.0254-5357.2007.06.007

Wen X H, Shao C Y, Zhang Z, et al. Determination of trace arsenic, antimony, selenium in soil samples by hydride generation-atomic fluorescence spectrometry with slurry sample introduction[J]. Rock and Mineral Analysis, 2007, 26(6): 460-464. doi: 10.3969/j.issn.0254-5357.2007.06.007

[64]

赵宗生, 赵小学, 姜晓旭, 等. 原子荧光光谱测定土壤和水系沉积物中硒的干扰来源及消除方法[J]. 岩矿测试, 2019, 38(3): 333-340.

Zhao Z S, Zhao X X, Jiang X X, et al. Interference sources and elimination methods for the determination of selenium in soil and water sediment by atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 2019, 38(3): 333-340.

[65]

Zhou F, Li Y, Ma Y, et al. Selenium bioaccessibility in native seleniferous soil and associated plants: Comparison between in vitro assays and chemical extraction methods[J]. Science of The Total Environment, 2020, 762: 1-10.

[66]

Bullock L A, Parnell J, Feldmann J, et al. Selenium and tellurium concentrations of Carboniferous British coals[J].Geological Journal, 2019, 54(3): 1401-1412. doi: 10.1002/gj.3238

[67]

Balcaen L, Bolea-Fernandez E, Resano M, et al. Inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS): A powerful and universal tool for the interference-free determination of (ultra)trace elements-A tutorial review[J].Analytica Chimica Acta, 2015, 894: 7-19. doi: 10.1016/j.aca.2015.08.053

[68]

de Souza J R, da Silva L, da Rocha M S, et al. Dynamic reaction cell-ICP-MS as a powerful tool for quality control of a Se-enriched dietary supplement[J].Food Analytical Methods, 2017, 10: 3088-3097. doi: 10.1007/s12161-017-0861-y

[69]

Henn A S, Rondan F S, Mesko M F, et al. Determination of Se at low concentration in coal by collision/reaction cell technology inductively coupled plasma mass spectrometry[J].Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 143: 48-54. doi: 10.1016/j.sab.2018.02.014

[70]

屈明华, 陈雄弟, 倪张林, 等. DRC-ICP-MS法测定土壤硒前处理方法研究[J]. 土壤通报, 2019, 50(3): 698-703.

Qu M H, Chen X D, Ni Z L, et al. Pretreatment for determination of soil selenium by ICP-MS with dynamic reaction cell[J]. Chinese Journal of Soil Science, 2019, 50(3): 698-703.

[71]

de Feudis M, D'Amato R, Businelli D, et al. Fate of selenium in soil: A case study in a maize (Zea mays L.) field under two irrigation regimes and fertilized with sodium selenite[J].Science of The Total Environment, 2019, 659: 131-139. doi: 10.1016/j.scitotenv.2018.12.200

[72]

刘芸, 曹国松, 程佩, 等. 微波消解-ICP-MS法测定土壤中的硒含量[J]. 化学与生物工程, 2017, 34(11): 67-70. doi: 10.3969/j.issn.1672-5425.2017.11.017

Liu Y, Cao G S, Cheng P, et al. Determination of selenium content in soil by microwave digestion-ICP-MS[J].Chemistry & Bioengineering, 2017, 34(11): 67-70. doi: 10.3969/j.issn.1672-5425.2017.11.017

[73]

林立, 王琳琳. 采用ICP-MS/MS对硒和砷检测的质谱干扰[J]. 分析试验室, 2016, 35(3): 344-348.

Lin L, Wang L L. Study on the interference of selenium and arsenic in different detecting conditions by ICP-MS/MS[J]. Chinese Journal of Analysis Laboratory, 2016, 35(3): 344-348.

[74]

Kumkrong P, LeBlanc K L, Mercier P H J, et al. Selenium analysis in waters.Part 1:Regulations and standard methods[J].Science of The Total Environment, 2018, 640-641: 1611-1634. doi: 10.1016/j.scitotenv.2018.05.392

[75]

Gil-Díaz T, Schäfer J, Keller V, et al. Tellurium and selenium sorption kinetics and solid fractionation under contrasting estuarine salinity and turbidity conditions[J]. Chemical Geology, 2020, 532: 1-10.

[76]

Bolea-Fernandez E, Balcaen L, Resano M, et al. Interference-free determination of ultra-trace concentrations of arsenic and selenium using methyl fluoride as a reaction gas in ICP-MS/MS[J].Analytical and Bioanalytical Chemistry, 2015, 407(3): 919-929. doi: 10.1007/s00216-014-8195-8

[77]

di Tullo P, Pannier F, Thiry Y, et al. Field study of time-dependent selenium partitioning in soils using isotopically enriched stable selenite tracer[J].Science of The Total Environment, 2016, 562: 280-288. doi: 10.1016/j.scitotenv.2016.03.207

[78]

谭德灿, 朱建明, 李社红, 等. 同位素双稀释剂法的原理与应用Ⅱ: 应用部分[J]. 矿物岩石地球化学通报, 2017, 36(6): 948-954. doi: 10.3969/j.issn.1007-2802.2017.06.010

Tan D C, Zhu J M, Li S H, et al. The principle and application of isotopic double spike technique: The application[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(6): 948-954. doi: 10.3969/j.issn.1007-2802.2017.06.010

[79]

Pons M L, Millet M A, Nowell G N, et al. Precise measurement of selenium isotopes by HG-MC-ICPMS using a 76-78 double-spike[J].Journal of Analytical Atomic Spectrometry, 2020, 35(2): 320-330. doi: 10.1039/C9JA00331B

[80]

Marguí E, Floor G H, Hidalgo M, et al. Analytical possibilities of total reflection X-ray spectrometry (TXRF) for trace selenium determination in soils[J].Analytical Chemistry, 2010, 82(18): 7744-7751. doi: 10.1021/ac101615w

[81]

Kocot K, Leardi R, Walczak B, et al. Determination and speciation of trace and ultratrace selenium ions by energy-dispersive X-ray fluorescence spectrometry using graphene as solid adsorbent in dispersive micro-solid phase extraction[J].Talanta, 2015, 134: 360-365. doi: 10.1016/j.talanta.2014.11.036

[82]

Scheinost A C, Kretzschmar R, Pfister S, et al. Combining selective sequential extractions, X-ray absorption spectroscopy, and principal component analysis for quantitative zinc speciation in soil[J]. Environmental Science & Technology, 2002, 36(23): 5021-5028.

[83]

Qin H B, Takeichi Y, Nitani H, et al. Tellurium distri-bution and speciation in contaminated soils from abandoned mine tailings: Comparison with selenium[J]. Environmental Science & Technology, 2017, 51(11): 6027-6035.

[84]

Nie Z, Finck N, Heberling F, et al. Adsorption of sele-nium and strontium on goethite: EXAFS study and surface complexation modeling of the ternary systems[J].Environmental Science & Technology, 2017, 51(7): 3751-3758.

[85]

Ryser A, Strawn D, Marcus M, et al. Microscopically focused synchrotron X-ray investigation of selenium speciation in soils developing on reclaimed mine lands[J]. Environmental Science & Technology, 2006, 40(2): 462-467.

相似文献(共20条)

[1]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[2]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[3]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[4]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[5]

刘平, 杨军红. 数字化技术在铁基合金铬元素可见光谱分析中的应用. 岩矿测试, 2008, 27(1): 33-36.

[6]

李曼, 王连和. 区域地球化学样品分析质量管理计算机控制. 岩矿测试, 2008, 27(3): 219-222.

[7]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[8]

杨红霞, 何红蓼, 李冰, 倪哲明. 环境样品中痕量元素的化学形态分析Ⅱ.砷汞镉锡铅硒铬的形态分析. 岩矿测试, 2005, (2): 118-128.

[9]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[10]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[11]

蔡玉曼. 硅钼蓝分光光度法测定钛铁矿中二氧化硅不确定度评定. 岩矿测试, 2008, 27(2): 123-126.

[12]

袁建, 王亚平, 许春雪, 代阿芳, 王苏明, 安子怡. 地下水中砷形态标准物质研制. 岩矿测试, 2012, 31(2): 331-337.

[13]

田芹, 吴淑琪, 佟玲, 罗代洪. 中国典型类型土壤中有机氯农药和多氯联苯成分分析标准物质的研制. 岩矿测试, 2015, 34(2): 238-244. doi: 10.15898/j.cnki.11-2131/td.2015.02.015

[14]

万国江, 葛晓立. 张家口克山病地区土壤硒的地球化学形态研究. 岩矿测试, 2000, (4): 254-258.

[15]

王亚平, 鲍征宇. 恬矿库周围土壤中重金属存在形态特征研究. 岩矿测试, 2000, (1): 7-13.

[16]

谢薇, 杨耀栋, 菅桂芹, 李国成, 赵新华, 侯佳渝. 四种浸提剂对果园与菜地土壤有效硒浸提效果的对比研究. 岩矿测试, 2020, 39(3): 434-441. doi: 10.15898/j.cnki.11-2131/td.201905150063

[17]

高孝礼, 汤志云, 张培新, 肖灵, 李方实. 多目标生态地球化学调查土壤样品中砷硒锑有效态分析方法的商榷. 岩矿测试, 2004, (3): 173-178.

[18]

张绿茵, 余晓平, 郭亚飞, 邓天龙. 生物样品中硒形态分析前处理技术. 岩矿测试, 2012, 31(3): 407-412.

[19]

赵秀峰, 高孝礼, 曹磊, 曹景洋, 路新成. 土壤界限含水率标准物质研制. 岩矿测试, 2021, 40(4): 583-592. doi: 10.15898/j.cnki.11-2131/td.202008280119

[20]

薛静, 安帅, 汪寅夫, 高慧莉, 史佳铭. 王水水浴消解-电感耦合等离子体质谱法测定土壤中的硒. 岩矿测试, 2020, 39(5): 720-725. doi: 10.15898/j.cnki.11-2131/td.202003050025

计量
  • PDF下载量(27)
  • 文章访问量(979)
  • HTML全文浏览量(30)
  • 被引次数(0)
目录

Figures And Tables

土壤硒的存在特征及分析测试技术研究进展

伊芹, 程皝, 尚文郁