【引用本文】 吴旭旭, 陆太进, 杨池玉, 等. 高温高压合成钻石晶体表面微形貌观察及其成因探讨[J]. 岩矿测试, 2019, 38(4): 411-417. doi: 10.15898/j.cnki.11-2131/td.201811150122
WU Xu-xu, LU Tai-jin, YANG Chi-yu, et al. Observation of Surface Microstructure of HPHT Synthetic Diamond Crystals and Genesis Discussion[J]. Rock and Mineral Analysis, 2019, 38(4): 411-417. doi: 10.15898/j.cnki.11-2131/td.201811150122

高温高压合成钻石晶体表面微形貌观察及其成因探讨

1. 

自然资源部珠宝玉石首饰管理中心北京研究所, 北京 100013

2. 

中国地质大学(北京)珠宝学院, 北京 100083

收稿日期: 2018-11-15  修回日期: 2019-03-18  接受日期: 2019-04-09

基金项目: 国家自然科学基金项目(41473030, 41272086)

作者简介: 吴旭旭, 硕士研究生, 宝石学专业。E-mail:935694509@qq.com

通信作者: 陆太进, 博士, 主要从事钻石、有色宝石的检测及仪器开发等研究。E-mail:lutj@ngtc.gov.cn

Observation of Surface Microstructure of HPHT Synthetic Diamond Crystals and Genesis Discussion

1. 

Research Institute of Beijing, National Gems & Jewelry Technology Administrative Center, Ministry of Natural Resources, Beijing 100013, China

2. 

School of Gemmology, China University of Geosciences(Beijing), Beijing 100083, China

Corresponding author: LU Tai-jin, lutj@ngtc.gov.cn

Received Date: 2018-11-15
Revised Date: 2019-03-18
Accepted Date: 2019-04-09

摘要:我国作为世界上最大的合成钻石生产国,其产量占据世界总产量的90%以上,其中以高温高压法(HPHT)合成钻石为主。国内外学者对于HPHT合成钻石物性的测试方法和性质分析较为完备,但是对HPHT合成钻石生长完成后的酸洗过程以及酸洗后留下的内外部微形貌亟待研究。本文采用激光共聚焦显微镜和超景深三维显微镜对118粒产自我国的HPHT合成钻石进行内外部特征观察,并配合激光拉曼光谱仪对这些微细结构内的包裹残余进行定性分析。发现了三类特征的结构类型:成一定夹角的阶梯型生长结构,揭示了HPHT合成钻石聚型晶的结晶学特质;近平行线状划痕,反映了生长腔体内钻石晶粒间的接触关系;通过独特的"绳捆纹"结构进行观察和分析,认为这一结构反映了HPHT合成钻石的生长速率。这些钻石表面的微形貌反映了HPHT合成钻石梯度高温和持续高压的生长条件和环境,对于HPHT合成钻石的鉴别具有指导意义。

关键词: 合成钻石, 高温高压, 表面微细特征, 激光共聚焦显微镜, 晶体生长速率

要点

(1) 揭示和总结了HPHT合成钻石的三类特征结构。

(2) 提出并探讨了HPHT合成钻石中特征的“绳捆纹”结构。

(3) 分析论证了HPHT合成钻石内外微形貌与其生长机制的联系。

Observation of Surface Microstructure of HPHT Synthetic Diamond Crystals and Genesis Discussion

ABSTRACT

BACKGROUND:

As the world's largest producer of synthetic diamonds, China accounts for more than 90% of the world's total production, of which high pressure-high temperature (HPHT) synthetic diamonds are dominant. Previous scholars have conducted many studies on analytical methods and property analysis of HPHT synthetic diamonds. However, the research on the pickling process after the growth of HPHT synthetic diamonds and the internal and external micro-structures after pickling is still insufficient.

OBJECTIVES:

To characterize 118 synthetic diamonds produced in China by high temperature and high pressure method.

METHODS:

The HPHT synthetic diamonds were observed by laser scanning confocal microscopy (LSCM) and ultra-depth-of-field 3D microscopy, and the dark inclusions in these micro-structures were qualitatively analyzed by laser Raman spectroscopy.

RESULTS:

Three structure types were found. Step-like growth structures with certain angles revealed the crystallographic characteristics of HPHT synthetic diamond poly-crystals. Near-parallel linear scratches reflected the contact relationship between diamond grains in the growth chamber. The 'rope-tied' structures reflected the growth rate of HPHT synthetic diamonds.

CONCLUSIONS:

The micromorphology of these diamond surfaces reflects the growth conditions and environment of HPHT synthetic diamond gradient high temperature and continuous high pressure, which is of significance for the identification of HPHT synthetic diamonds.

KEY WORDS: synthetic diamond, high pressure-high temperature, micro-structure, laser scanning confocal microscopy, crystal growth rate

HIGHLIGHTS

(1) A summary of three characteristic structures of synthetic diamonds at high temperature and high pressure.

(2) Proposition and discussion of the 'rope-tied' structures of HPHT synthetic diamonds.

(3) Analysis and demonstration of the relationship of the internal and external micro-structures of HPHT synthetic diamonds with their growth mechanism.

本文参考文献

[1]

D'Haenens-Johansson U F S, Katrusha A, Moe K S, et al. Large colorless HPHT-grown synthetic gem diamonds from new diamond technology, Russia[J]. Gems & Gemology, 2015, 51(3): 260-279.

[2]

D'Haenens-Johansson U F S, Kyaw S M, Johnson P, et al. Near-colorless HPHT synthetic diamonds from AOTC group[J]. Gems & Gemology, 2014, 50(1): 2-14.

[3]

尹龙卫, 李木森, 孙东升, 等. 人造金刚石晶体生长的微观机制[J]. 人工晶体学报, 2000, 29(4): 386-389. doi: 10.3969/j.issn.1000-985X.2000.04.018

Yin L W, Li M S, Sun D S, et al. Microscopic observation of synthetic diamond growth produced in Fe-Ni-C system[J].Journal of Synthetic Crystals, 2000, 29(4): 386-389. doi: 10.3969/j.issn.1000-985X.2000.04.018

[4]

陆太进. 钻石鉴定和研究的进展[J]. 宝石和宝石学杂志, 2010, 12(4): 1-5. doi: 10.3969/j.issn.1008-214X.2010.04.001

Lu T J. Development on identification and research of diamond[J].Journal of Gems and Gemmology, 2010, 12(4): 1-5. doi: 10.3969/j.issn.1008-214X.2010.04.001

[5]

宋中华, 陆太进, 柯捷, 等. 国产大颗粒宝石级无色高压高温合成钻石的鉴定特征[J]. 宝石和宝石学杂志, 2016, 18(3): 1-8. doi: 10.3969/j.issn.1008-214X.2016.03.001

Song Z H, Lu T J, Ke J, et al. Identification characteristic of large near-colorless HPHT synthetic diamond from China[J].Journal of Gems and Gemmology, 2016, 18(3): 1-8. doi: 10.3969/j.issn.1008-214X.2016.03.001

[6]

Liu W C. A self-designed laser scanning differential confocal microscopy with a novel vertical scan algorithm for fast image scanning[J].IFAC PapersOnLine, 2017, 50(1): 3221-3226. doi: 10.1016/j.ifacol.2017.08.446

[7]

杨志军, 彭明生, 谢先德, 等. 金刚石的微区显微红外光谱分析及其意义[J]. 岩矿测试, 2002, 21(3): 161-165. doi: 10.3969/j.issn.0254-5357.2002.03.001

Yang Z J, Peng M S, Xie X D, et al. Micro-area analysis of diamond by micro-infrared spectrometry and its significance[J]. Rock and Mineral Analysis, 2002, 21(3): 161-165. doi: 10.3969/j.issn.0254-5357.2002.03.001

[8]

宋中华, 陆太进, 苏隽, 等. 无色-近无色高温高压合成钻石的谱图特征及其鉴别方法[J]. 岩矿测试, 2016, 35(5): 496-504.

Song Z H, Lu T J, Su J, et al. The spectral characteristics and identification techniques for colorless and near-colorless HPHT synthetic diamonds[J]. Rock and Mineral Analysis, 2016, 35(5): 496-504.

[9]

杨志军, 彭明生, 蒙宇飞, 等. 金刚石中氮、氢含量的变化及在金刚石生长中的意义[J]. 光谱学与光谱分析, 2007, 27(6): 1066-1070. doi: 10.3321/j.issn:1000-0593.2007.06.008

Yang Z J, Peng M S, Meng Y F, et al. Distribution of nitrogen and hydrogen in diamond and its significance to nucleation and growth of diamond[J].Spectroscopy and Spectral Analysis, 2007, 27(6): 1066-1070. doi: 10.3321/j.issn:1000-0593.2007.06.008

[10]

Lu T J, Ke J, Qiu Z L, et al. Surface dissolution features and contact twinning in natural diamonds[J]. Journal of Mineralogy and Geochemistry, 2018, 195(2): 145-153.

[11]

苑执中, 杨志军, 彭明生, 等. 金刚石的晶格畸变[J]. 矿物岩石地球化学通报, 2002, 21(2): 114-116. doi: 10.3969/j.issn.1007-2802.2002.02.008

Yuan Z Z, Yang Z J, Peng M S, et al. Lattice distortion in diamonds[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2002, 21(2): 114-116. doi: 10.3969/j.issn.1007-2802.2002.02.008

[12]

Ferrari A C, Robertson J. Raman spectroscopy of amor-phous, nanostructured, diamond-like carbon, and nanodiamond[J].Philosophical Transactions of the Royal Society London, Series A (Mathematical, Physical and Engineering Sciences), 2004, 362(1824): 2477-2512. doi: 10.1098/rsta.2004.1452

[13]

Bulanova G P. The formation of diamond[J].Journal of Geochemical Exploration, 1995, 53: 1-23. doi: 10.1016/0375-6742(94)00016-5

相似文献(共18条)

[1]

张伟娜, 陆继龙, 段太成. 高温高压密闭溶样-电感耦合等离子体质谱法测定荧光粉中的杂质元素. 岩矿测试, 2012, 31(1): 90-94.

[2]

宋中华, 陆太进, 苏隽, 高博, 唐诗, 胡宁, 柯捷, 张钧. 无色-近无色高温高压合成钻石的谱图特征及其鉴别方法. 岩矿测试, 2016, 35(5): 496-504. doi: 10.15898/j.cnki.11-2131/td.2016.05.008

[3]

宋中华, 陆太进, 苏隽, 柯捷, 唐诗, 李键, 高博, 张钧. 利用吸收和发光光谱技术分析高温高压天然富氢钻石的鉴定特征. 岩矿测试, 2018, 37(1): 64-69. doi: 10.15898/j.cnki.11-2131/td.201705040072

[4]

高镜涵, 陈勇, 徐兴友, 黎萍, 王娟, 韩云. 激光共聚焦扫描显微镜测定烃类包裹体气液比的误差校正研究. 岩矿测试, 2015, 34(5): 558-564. doi: 10.15898/j.cnki.11-2131/td.2015.05.010

[5]

赵应权, 沈忠民, 王鹏. 光学显微镜成像方式及投影冷光源的分频合成探讨. 岩矿测试, 2014, 33(5): 674-680.

[6]

熊大和. 玄武岩的高温高压实验研究. 岩矿测试, 1982, (2): 13-24.

[7]

奥地利安东帕. HPA—S高温高压消解铂族金属. 岩矿测试, 2007, 26(3): 文后I-文后I.

[8]

兰延, 陆太进, 张丛森, 梁榕, 丁汀, 陈华, 柯捷, 毕立君. 新型GV5000宽频诱导发光测试仪的研制及其应用于筛分无色小颗粒合成钻石和天然钻石. 岩矿测试, 2016, 35(5): 505-512. doi: 10.15898/j.cnki.11-2131/td.2016.05.009

[9]

黄圣轩, 巫翔, 秦善. 高温高压下元素配分的原位实验与计算模拟研究进展. 岩矿测试, 2016, 35(2): 117-126. doi: 10.15898/j.cnki.11-2131/td.2016.02.002

[10]

樊守忠, 李国会. TAP,PET等分析晶体的表面处理. 岩矿测试, 1989, (2): 147-148.

[11]

, 郑海飞, 陈晋阳. 高温下合成包裹体中流体水分子氢键的拉曼光谱分析. 岩矿测试, 2002, (3): 166-170.

[12]

唐诗, 苏隽, 陆太进, 马永旺, 柯捷, 宋中华, 张钧, 张晓玉, 代会茹, 李海波, 张健, 吴旭旭, 刘厚祥. 化学气相沉积法再生钻石的实验室检测特征研究. 岩矿测试, 2019, 38(1): 62-70. doi: 10.15898/j.cnki.11-2131/td.201802070017

[13]

周文勤. 加速器质谱分析超痕量铍同位素研究深海沉积物沉积速率和多金属结核生长速率 . 岩矿测试, 1997, (2): 109-117.

[14]

陈克樵. 吉林陨石熔壳的扫描电子显微镜研究. 岩矿测试, 1982, (4): 19-24.

[15]

陈克樵. 吉林陨石熔渗脉的扫描电子显微镜研究. 岩矿测试, 1983, (4): 282-287.

[16]

张素新, 肖少泉. 扫描电子显微镜下放射虫化石制样方法的探讨. 岩矿测试, 1998, (4): 303-305.

[17]

李芳, 刘艳荣, 吕新彪. 红外显微镜在地质学的应用与前景. 岩矿测试, 2006, 25(4): 355-359.

[18]

杨炳飞, 冯安生. 旋转载物台显微镜下矿物定量及其精确性研究. 岩矿测试, 2018, 37(3): 292-297. doi: 10.15898/j.cnki.11-2131/td.201709270156

计量
  • PDF下载量(17)
  • 文章访问量(170)
  • HTML全文浏览量(12)
  • 被引次数(0)
目录

Figures And Tables

高温高压合成钻石晶体表面微形貌观察及其成因探讨

吴旭旭, 陆太进, 杨池玉, 张健, 唐诗, 陈华, 张勇, 柯捷, 何明跃