【引用本文】 孟洁, 翟增秀, 刘英会, 等. 气袋采样法对还原硫化物测定的影响因素分析及机理研究[J]. 岩矿测试, 2019, 38(2): 179-185. doi: 10.15898/j.cnki.11-2131/td.201804010034
MENG Jie, ZHAI Zeng-xiu, LIU Ying-hui, et al. Influence Factors and Mechanism Study on Bag Sampling Method for Determination of Reduced Sulfide Compound by Gas Chromatography-Mass Spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 179-185. doi: 10.15898/j.cnki.11-2131/td.201804010034

气袋采样法对还原硫化物测定的影响因素分析及机理研究

1. 

天津市环境保护科学研究院, 国家环境保护恶臭污染控制重点实验室, 天津 300191

2. 

天津迪兰奥特环保科技开发有限公司, 天津 300191

收稿日期: 2018-04-01  修回日期: 2018-11-17  接受日期: 2019-01-04

基金项目: 国家重点研发计划项目(2016YFC0700603-003);国家自然科学基金面上项目(21577096)

作者简介: 孟洁, 工程师, 主要从事环境中痕量物质的分析检测方法开发。E-mail:sabrina_meng@126.com

通信作者: 韩萌, 高级工程师, 主要从事恶臭物质分析和在线监测方法研究。E-mail:nkselina@sina.com

Influence Factors and Mechanism Study on Bag Sampling Method for Determination of Reduced Sulfide Compound by Gas Chromatography-Mass Spectrometry

1. 

State Key Laboratory on Odor Pollution Control, Tianjin Academy of Environmental Sciences, Tianjin 300191, China

2. 

Tianjin Sinodour Environmental Technology Co., Ltd., Tianjin 300191, China

Corresponding author: HAN Meng, nkselina@sina.com

Received Date: 2018-04-01
Revised Date: 2018-11-17
Accepted Date: 2019-01-04

摘要:还原硫化物是一Z类典型的恶臭物质,其特点是活性高、不易储存,因此适宜的储存条件对还原硫化物的准确测定具有重要意义。本文使用气相色谱-质谱联用技术,从气袋材质、还原硫化物初始浓度、还原硫化物性质和储存时间四个因素探究袋采样法储存还原硫化物过程的损失情况。以Tedlar®PVF和Teflon®FEP为目标采样袋,使用5个初始浓度(0.001、0.010、0.100、1.000和10.000μg/mL)的混合还原硫化物,选择0、2、6、12、24、48以及72h的储存时间,以响应因子和相对回收率作为评价因子,并使用配对t检验法和吸附动力学,研究影响储存效果的主要因素、物质损失机理以及两种采样袋的储存能力。结果表明,储存时间越长、物质初始浓度越高,物质活性越强,损失情况越严重;在环境温度达到60℃时,Tedlar®PVF的基质背景较Teflon®FEP更复杂;相同条件下,还原硫化物在Teflon®FEP储存过程中损失更严重。依据研究结果建议:①样品采集后避光保存;②低浓度含硫样品的测定在采样后8h内完成,高浓度含硫样品的测定在2h内完成;③若待测样品气体温度较高,优先选择Teflon®FEP采样袋,气体温度较低条件下选择Tedlar®PVF采样袋,可最大限度保持样品的原始状态。本研究成果有利于确保还原硫化物样品的储存稳定性,最大限度还原恶臭污染现场情况,为恶臭污染的分析测试以及后续的恶臭污染控制与治理提供技术支持。

关键词: 还原硫化物, 袋采样法, 储存条件, 气相色谱-质谱法

要点

(1) 研究了物质性质及初始浓度、储存时间和气袋材质对储存硫化物的影响。

(2) 揭示了采样袋与还原硫化物的相互作用机理。

(3) 提出了含有还原硫化物样品气体的储存条件和最佳检测时间建议。

Influence Factors and Mechanism Study on Bag Sampling Method for Determination of Reduced Sulfide Compound by Gas Chromatography-Mass Spectrometry

ABSTRACT

BACKGROUND:

Reduced sulfide compound is a typical odorant characterized by high activity and is difficult to store. Therefore, suitable storage conditions are of great significance for the accurate determination of reduced sulfides.

OBJECTIVES:

To understand the causes of loss and deterioration of highly active reduced sulfides, and to select the optimal storage conditions.

METHODS:

Gas Chromatography-Mass Spectrometry was used to investigate the loss of the process of storing reduced sulfides by bag sampling from the following four factors, air bag material, initial concentration of reduced sulfide, reduced sulfide property, and storage time. Sample bags, Tedlar®PVF and Teflon®FEP, were used as object bags. Using 5 initial concentrations (0.001, 0.010, 0.100, 1.000 and 10.000μg/mL) of mixed reduced sulfides, 0, 2, 6, 12, 24, 48 and 72h as the storage time, using the response factor and relative recovery as the evaluation factor, and using the paired t-test and adsorption kinetics, the main factors affecting the storage effect, the mechanism of material loss and the comparison of the storage capacity of the two sampling bags were studied.

RESULTS:

The results show that the longer the storage time, the higher the initial concentration of the substance, and the stronger the activity of the substance, the more serious the loss. When the ambient temperature reaches 60℃, the substrate background of Tedlar®PVF is more complicated than that of Teflon®FEP. Under the same conditions, the reduced sulfides are more severely damaged during Teflon®FEP storage.

CONCLUSIONS:

It was suggested that:(1) the reduced sulfide be stored in shad after sampling; (2) analysis should be finished within eight hours and two hours for low and high concentration, respectively; (3) Teflon®FEP be used at high temperature and Tedlar®PVF at low temperature. The research results were beneficial to ensure the storage stability of the reduced sulfide samples, minimize the situation of odor pollution, and provide technical support for the analysis of odor pollution and the subsequent control and treatment of odor pollution.

KEY WORDS: reduced sulfide compound, bag sampling method, storage condition, Gas Chromatography-Mass Spectrometry

HIGHLIGHTS

(1) Influence factors for the storage of reduced sulfide compounds were investigated, including material property, initial concentration, storage time and bag material.

(2) The interaction mechanism between bags and reduced sulfide compounds was extracted.

(3) Storage condition and optimal testing time for reduced sulfide compounds were suggested.

本文参考文献

[1]

Almomani F A, Bhosale R R, Kumar A, et al. Removal of volatile sulfur compounds by solar advanced oxidation technologies and bioprocesses[J].Solar Energy, 2016, 135: 348-358. doi: 10.1016/j.solener.2016.05.037

[2]

Nagata Y.Measurement of Odor Threshold by Triangle Odor Bag Method[R].Odor Measurement Review, Ministry of Environment (MOE), Japan, 2003: 118-127.

[3]

Li Q, Lancaster Jr J R. Chemical foundations of hydrogen sulfide biology[J].Nitric Oxide, 2013, 35: 21-34. doi: 10.1016/j.niox.2013.07.001

[4]

沈秀娥, 常淼, 刘保献, 等. 大气预浓缩仪-GC/FPD测定环境空气中的痕量硫化物[J]. 中国环境监测, 2015, 31(6): 103-108. doi: 10.3969/j.issn.1002-6002.2015.06.022

Shen X E, Chang M, Liu B X, et al. Determination of trace sulfur compounds in environmental air by GC/FPD coupled the air preconcentrations[J].Environmental Monitoring in China, 2015, 31(6): 103-108. doi: 10.3969/j.issn.1002-6002.2015.06.022

[5]

孟天竹, 张金波, 蔡祖聪, 等. 气相色谱法测定土壤中挥发性硫化物[J]. 环境监测管理与技术, 2016, 28(1): 46-49. doi: 10.3969/j.issn.1006-2009.2016.01.012

Meng T Z, Zhang J B, Cai Z C, et al. Determination of sulfur gases emitted from soils by gas chromatography with sulfur chemiluminescence detector[J].The Administration and Technique of Environmental Monitoring, 2016, 28(1): 46-49. doi: 10.3969/j.issn.1006-2009.2016.01.012

[6]

Borrás E, Tortajada-Genaro L A, Muñoz A, et al. Determina-tion of reduced sulfur compounds in air samples for the monitoring of malodor caused by landfills[J].Talanta, 2016, 148: 472-477. doi: 10.1016/j.talanta.2015.11.021

[7]

Sulyok M, Haberhauer-Troyer C, Rosenberg E, et al. Obser-vation of sorptive losses of volatile sulfur compounds during natural gas sampling[J].Journal of Chromatography A, 2002, 946(1-2): 301-305. doi: 10.1016/S0021-9673(01)01541-2

[8]

Trabue S, Scoggin K, Mitloehner F, et al. Field sampling method for quantifying volatile sulfur compounds from animal feeding operations[J].Atmospheric Environment, 2008, 42(14): 3332-3341. doi: 10.1016/j.atmosenv.2007.03.016

[9]

施玉格, 李刚. 气相色谱质谱法测定环境空气中恶臭硫化物成分[J]. 干旱环境监测, 2014, 28(4): 174-177. doi: 10.3969/j.issn.1007-1504.2014.04.007

Shi Y G, Li G. Analysis of the stench sulfide components in the environmental air by GC/MS[J].Arid Environmental Monitoring, 2014, 28(4): 174-177. doi: 10.3969/j.issn.1007-1504.2014.04.007

[10]

Parker D B, Perschbacher-Buser Z L, Andy C N, et al. Recovery of agricultural odors and odorous compounds from polyvinyl fluoride film bags[J].Sensors, 2010, 10(9): 8536-8552. doi: 10.3390/s100908536

[11]

Mochalski P, Wzorek B, Śliwka I, et al. Suitability of different polymer bags for storage of volatile sulphur compounds relevant to breath analysis[J].Journal of Chromatography B, 2009, 877(3): 189-196. doi: 10.1016/j.jchromb.2008.12.003

[12]

Jo S H, Kim K H, Shon Z H, et al. Identification of con-trol parameters for the sulfur gas storability with bag sampling methods[J].Analytica Chimica Acta, 2012, 738: 51-58. doi: 10.1016/j.aca.2012.06.010

[13]

Kim Y H, Kim K H, Jo S H, et al. Comparison of storage stability of odorous VOCs in polyester aluminum and polyvinyl fluoride Tedlar® bags[J].Analytica Chimica Acta, 2012, 712: 162-167. doi: 10.1016/j.aca.2011.11.014

[14]

Ahn J H, Deep A, Kim K H, et al. The storage stability of bio-genic volatile organic compounds (BVOCs) in polyester aluminum bags[J]. Atmospheric Environment, 2016, 14: 430-434.

[15]

董秀玥. 配对t检验与成组t检验优选方法研究[J]. 数理医药学杂志, 2010, 23(1): 11-14. doi: 10.3969/j.issn.1004-4337.2010.01.004

Dong X Y. Study on the optimal method of paired t test and group t test[J].Journal of Mathematical Medicine, 2010, 23(1): 11-14. doi: 10.3969/j.issn.1004-4337.2010.01.004

[16]

Sulyok M, Haberhauer-Troyer C, Rosenberg E, et al. Investiga-tion of the stability of selected volatile sulfur compounds in different sampling containers[J].Journal of Chromatography A, 2001, 917(1-2): 367-374. doi: 10.1016/S0021-9673(01)00654-9

[17]

武汉大学. 分析化学(第四版)[M] . 北京: 高等教育出版社, 2000

Wuhan University. Analytical Chemistry(4th Edition)[M] . Beijing: Higher Education Press, 2000
[18]

Foo K Y, Hameed B H. Insights into modeling of adsor-ption isotherm systems[J].Chemical Engineering Journal, 2010, 156(1): 2-10. doi: 10.1016/j.cej.2009.09.013

[19]

Andino J M, Bulter J W. A study of stability of method-fueled vehicle emission in tedlar bags[J].Environment Science Technology, 1991, 25(9): 1644-1649. doi: 10.1021/es00021a017

[20]

Behera S N, Sharma M. Degradation of SO2, NO2 and NH3 leading to formation of secondary inorganic aerosols:An environmental chamber study[J].Atmospheric Environment, 2011, 45(24): 4015-4024. doi: 10.1016/j.atmosenv.2011.04.056

相似文献(共20条)

[1]

孙玮琳, 沈斌, 汪双清, 龚迎莉. 自然水体和土壤中氯代烃和芳香烃类化合物分析测试方法研究. 岩矿测试, 2008, 27(3): 174-178.

[2]

汪瑾彦, 汤 桦, 陈大舟, 吴 雪, 冯 洁, 吴学丽, 李 蕾. 气相色谱-质谱法同时测定河流沉积物中多环芳烃和有机氯农药. 岩矿测试, 2010, 29(3): 225-230.

[3]

赖永忠, 季彦鋆. 气相动态顶空进样-气相色谱-质谱法同时分析饮用水源水中57种挥发性有机物. 岩矿测试, 2012, 31(5): 877-883.

[4]

张永涛, 张莉, 张琳. 短程选择离子扫描气相色谱-质谱法检测水中15种半挥发性有机物. 岩矿测试, 2008, 27(6): 401-404.

[5]

贾静, 饶竹. 吹扫捕集-气相色谱/质谱法测定土壤中挥发性有机化合物. 岩矿测试, 2008, 27(6): 413-417.

[6]

李义, 董建芳, 张宇. 地下水中挥发性有机物的吹扫捕集-气相色谱-质谱法测定. 岩矿测试, 2010, 29(5): 513-517.

[7]

李丽君, 汪寅夫, 王娜, 王海娇. 吹扫捕集-气相色谱/质谱法测定地下水中的挥发性有机物. 岩矿测试, 2010, 29(5): 547-551.

[8]

陶文靖, 黄勤, 李胜生. 顶空进样-气相色谱-质谱法测定地下水中25种挥发性有机污染物. 岩矿测试, 2010, 29(5): 543-546.

[9]

冯丽, 李诚, 张彦, 张喜友. 吹扫捕集/气相色谱-质谱法测定地下水中30种挥发性有机物. 岩矿测试, 2012, 31(6): 1037-1042.

[10]

张道来, 林学辉, 周明, 陈军辉, 杨佰娟, 夏宁, 王小如. 气相色谱-质谱法快速测定罗氏海盘车中6种邻苯二甲酸酯类有机污染物. 岩矿测试, 2012, 31(1): 159-165.

[11]

刘美美, 张小辉, 马娅妮, 李雪莹, 陶秋丽. 吹扫捕集-气相色谱-质谱联用法测定地下水中27种挥发性有机物. 岩矿测试, 2012, 31(3): 495-500.

[12]

汪雨, 刘聪, 陈舜琮, 武彦文. 气相色谱-质谱法初步鉴定不同品质的麝香. 岩矿测试, 2011, 30(1): 59-62.

[13]

陈卫明, 李庆霞, 张芳, 何小辉, 张勤. 加速溶剂萃取-气相色谱/气相色谱-质谱法测定土壤中7种多氯联苯. 岩矿测试, 2011, 30(1): 33-39.

[14]

贾静, 杨志鹏. 吹扫捕集-气相色谱/质谱法测定地下水中1,4-二噁烷. 岩矿测试, 2014, 33(4): 556-560.

[15]

史双昕, 卢婉云, 邵丁丁, 张烃, 黄业茹. 气相色谱-质谱法分析土壤中十溴联苯醚. 岩矿测试, 2008, 27(4): 274-278.

[16]

刘清辉, 曹攽, 马军, 李云木子. 气相色谱-质谱法测定水中8种多氯联苯. 岩矿测试, 2010, 29(5): 523-526.

[17]

李俊, 肖雅雯, 王震, 赵为武. 加速溶剂萃取-气相色谱/质谱法同时测定土壤中拟除虫菊酯类等18种农药残留. 岩矿测试, 2011, 30(5): 590-595.

[18]

徐洁, 鲜啟鸣. 气相色谱-质谱法分析某阻燃剂生产厂周边淡水鱼中的多溴联苯醚及其累积特征. 岩矿测试, 2017, 36(4): 405-412. doi: 10.15898/j.cnki.11-2131/td.201702200017

[19]

李松, 饶竹, 宋淑玲, 田芹, 赵威. 气相色谱-质谱在地下水检测过程中的重要性. 岩矿测试, 2010, 29(5): 518-522.

[20]

张小辉, 王晓雁. 气相色谱-质谱联用法测定土壤中16种多环芳烃. 岩矿测试, 2010, 29(5): 535-538.

计量
  • PDF下载量(10)
  • 文章访问量(221)
  • HTML全文浏览量(44)
  • 被引次数(0)
目录

Figures And Tables

气袋采样法对还原硫化物测定的影响因素分析及机理研究

孟洁, 翟增秀, 刘英会, 张君, 韩萌