【引用本文】 安茂国, 赵庆令, 谭现锋, 等. 化学还原-稳定化联合修复铬污染场地土壤的效果研究[J]. 岩矿测试, 2019, 38(2): 204-211. doi: 10.15898/j.cnki.11-2131/td.201806040068
AN Mao-guo, ZHAO Qing-ling, TAN Xian-feng, et al. Research on the Effect of Chemical Reduction-Stabilization Combined Remediation of Cr-contaminated Soil[J]. Rock and Mineral Analysis, 2019, 38(2): 204-211. doi: 10.15898/j.cnki.11-2131/td.201806040068

化学还原-稳定化联合修复铬污染场地土壤的效果研究

1. 

山东省鲁南地质工程勘察院, 山东 兖州 272100

2. 

自然资源部采煤沉陷区综合治理与生态修复工程技术创新中心, 山东 兖州 272100

收稿日期: 2018-06-04  修回日期: 2018-07-24  接受日期: 2018-08-10

基金项目: 山东省地质勘查项目“铬污染土壤化学还原法修复机理及效果研究”(鲁国土资字[2016]328号)

作者简介: 安茂国, 工程师, 主要从事矿产地质及生态地球化学工作。E-mail:15963775283@163.com

通信作者: 谭现锋, 研究员, 从事水工环地质工作。E-mail:geotan1977@126.com

Research on the Effect of Chemical Reduction-Stabilization Combined Remediation of Cr-contaminated Soil

1. 

Lunan Geo-Engineering Exploration Institute of Shandong Province, Yanzhou 272100, China

2. 

Technology Innovation Center of Integrated Management and Ecological Restoration for Mining Subsidence Area, Ministry of Natural Resources, Yanzhou 272100, China

Corresponding author: TAN Xian-feng, geotan1977@126.com

Received Date: 2018-06-04
Revised Date: 2018-07-24
Accepted Date: 2018-08-10

摘要:六价铬是国际公认的47种最危险废物之一,研究铬污染土壤的修复效果对污染场地风险管控具有重要的现实意义。本文以济南市某典型铬污染场地土壤作为研究对象,提出了"化学还原+固化稳定"的修复治理思路,针对修复剂类型、投加比、反应时间、还原效率、修复成本和环境效应等因素,确定了该修复工艺的最佳条件,并对污染土壤的修复效果进行评价。结果表明土壤中Cr(Ⅵ)的最佳修复条件为:以氯化亚铁作为化学还原剂,其投加比为5倍的理论投料比,还原时间为2天;以钙镁磷肥作为稳定剂,其投加比为10%(换算成钙镁磷肥与总铬的质量比为72:1)。采用以上条件修复铬污染土壤,总铬的生物可利用系数由0.4398降低至0.0017,修复后的土壤Cr(Ⅵ)含量介于0.315~0.501mg/kg,Cr(Ⅵ)被还原率大于99.5%。该结果可为土壤修复和决策提供依据。

关键词: 化学还原, 稳定化, 六价铬, 土壤修复, 联合方法

要点

(1) 采用了“化学还原+稳定化”的联合治理思路。

(2) 剖析了该联合修复方法的最佳运行条件,并且揭示了其影响规律。

Research on the Effect of Chemical Reduction-Stabilization Combined Remediation of Cr-contaminated Soil

ABSTRACT

BACKGROUND:

Cr(Ⅵ) is one of the 47 internationally recognized most dangerous wastes. Study on the remedy of Cr-contaminated soil is of great significance for risk control of contaminated soil.

OBJECTIVES:

To build a reliable method for Cr-contaminated soil, and to screen the optimal remediation conditions. To propose a chemical reduction-stabilization combined method for remediation of Cr(Ⅵ) contaminated soil and screen the remediation conditions including choice of reductant, soil/liquid ratio and stabilizer.

METHODS:

Soil from a typical chromium contaminated site in Jinan is used as the research object, and the idea of 'chemical reduction + solidification stability' is suggested, which is aimed at the types of repair agent, dosage ratio, reaction time, reduction efficiency, repair cost and environmental effect. The optimal conditions for the repair process were determined and the remediation effects of contaminated soil were evaluated.

RESULTS:

The results demonstrated that the optimal parameter for Cr(Ⅵ) treatment was using ferrous chloride as the reductant and treating for 2 days, controlling the addition amount of the reductant at 5 times of its stoichiometric need. Calcium magnesium phosphate was used as the stabilizer and its addition amount was controlled as 10%. After remediation, the bioavailable efficients of Cr in the soil reduced from 0.4398 to 0.0017. The results showed that contents of Cr(Ⅵ) in the treated soil were 0.315-0.501mg/kg, and 99.5% of Cr(Ⅵ) was reduced.

CONCLUSIONS:

The remedied soil satisfies the risk screen number for residual land. This result could provide reference and theoretical basis for soil remediation and decision-making.

KEY WORDS: chemical reduction, stabilization, Cr(Ⅵ), soil remediation, combined method

HIGHLIGHTS

(1) A chemical reduction-stabilization combined method for remediation of Cr(Ⅵ) contaminated soil was adopted.

(2) The optimal operational condition and the parameters of the method were investigated.

本文参考文献

[1]

Tardif S, Cipullo S, SøH U, et al. Factors governing the solid phase distribution of Cr, Cu and As in contaminated soil after 40 years of ageing[J].Science of the Total Environment, 2019, 652: 744-754. doi: 10.1016/j.scitotenv.2018.10.244

[2]

田衎, 杨珺, 孙自杰, 等. 矿区污染场地土壤重金属元素分析标准样品的研制[J]. 岩矿测试, 2017, 36(1): 82-88.

Tian K, Yang J, Sun Z J, et al. Preparation of soil certified reference materials for heavy metals in contaminated sites[J]. Rock and Mineral Analysis, 2017, 36(1): 82-88.

[3]

Lü J S, Wang Y M. Multi-scale analysis of heavy metals sources in soils of Jiangsu Coast, Eastern China[J].Chemosphere, 2018, 212: 964-973. doi: 10.1016/j.chemosphere.2018.08.155

[4]

Ma R, Zhou X N, Shi J S, et al. Heavy metal contamination and health risk assessment in critical zone of Luan River catchment in the North China Plain[J].Geochemistry:Exploration, Environment, Analysis, 2018, 18: 47-57. doi: 10.1144/geochem2017-010

[5]

Wang Q, Liu J F, Chen Z, et al. A causation-based method developed for an integrated risk assessment of heavy metals in soil[J].Science of the Total Environment, 2018, 642: 1396-1405. doi: 10.1016/j.scitotenv.2018.06.118

[6]

Diao Z H, Du J J, Jiang D, et al. Insights into the simultaneous removal of Cr6+ and Pb2+ by a novel sewage sludge-derived biochar immobilized nanoscale zero valent iron:Coexistence effect and mechanism[J].Science of the Total Environment, 2018, 642: 505-515. doi: 10.1016/j.scitotenv.2018.06.093

[7]

邓日欣, 罗伟嘉, 韩奕彤, 等. 膨润土负载纳米铁镍同步修复地下水中三氯乙烯和六价铬复合污染[J]. 岩矿测试, 2018, 37(5): 541-548.

Deng R X, Luo W J, Han Y T, et al. Simultaneous removal of TCE and Cr(Ⅵ) in groundwater by using bentonite-supported nanoscale Fe/Ni[J]. Rock and Mineral Analysis, 2018, 37(5): 541-548.

[8]

Economou-Eliopoulos M, Megremi I, Vasilatos C, et al. Geochemical constraints on the sources of Cr(Ⅵ) contamination in waters of Messapia (Central Evia) Basin[J].Applied Geochemistry, 2017, 84: 13-25. doi: 10.1016/j.apgeochem.2017.05.015

[9]

Séby F, Vacchina V. Critical assessment of hexavalent chromium species from different solid environmental, industrial and food matrices[J].Trends in Analytical Chemistry, 2018, 104: 54-68. doi: 10.1016/j.trac.2017.11.019

[10]

Clemention M, Shi X L, Zhang Z, et al. Oxidative stress and metabolic reprogramming in Cr(Ⅵ) carcinogenesis[J].Current Opinion in Toxicology, 2018, 8: 20-27. doi: 10.1016/j.cotox.2017.11.015

[11]

Khalid S, Shahid M, Niazi N K, et al. A comparison of technologies for remediation of heavy metal contaminated soils[J].Journal of Geochemical Exploration, 2017, 182: 247-268. doi: 10.1016/j.gexplo.2016.11.021

[12]

陈保冬, 张莘, 伍松林, 等. 丛枝菌根影响土壤-植物系统中重金属迁移转化和累积过程的机制及其生态应用[J]. 岩矿测试, 2019, 38(1): 1-25.

Chen B D, Zhang X, Wu S L, et al. The role of arbuscular mycorrhizal fungi in heavy metal translocation, transformation and accumulation in the soil-plant continuum:Underlying mechanisms and ecological implications[J]. Rock and Mineral Analysis, 2019, 38(1): 1-25.

[13]

Liu L W, Li W, Song W P, et al. Remediation techniques for heavy metal-contaminated soils:Principles and applicability[J].Science of the Total Environment, 2018, 633: 206-219. doi: 10.1016/j.scitotenv.2018.03.161

[14]

Choppala G, Kunhikrishnan A, Seshadri B, et al. Compa-rative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils[J].Journal of Geochemical Exploration, 2018, 184: 255-260. doi: 10.1016/j.gexplo.2016.07.012

[15]

Zhang M T, Yang C H, Zhao M, et al. Immobilization potential of Cr(Ⅵ) in sodium hydroxide activated slag pastes[J].Journal of Hazardous Materials, 2017, 321: 281-289. doi: 10.1016/j.jhazmat.2016.09.019

[16]

Ballesteros S, Rincón J M, Rincón-Mora B, et al. Vitrifi-cation of urban soil contamination by hexavalent chromium[J].Journal of Geochemical Exploration, 2017, 174: 132-139. doi: 10.1016/j.gexplo.2016.07.011

[17]

Wu J N, Zhang J, Xiao C Z, et al. Focus on factors affecting pH, flow of Cr and transformation between Cr(Ⅵ) and Cr(Ⅲ) in the soil with different electrolytes[J].Electrochimica Acta, 2016, 211: 652-662. doi: 10.1016/j.electacta.2016.06.048

[18]

Dhal B, Thatoi H N, Das N N, et al. Chemical and micro-bial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste:A review[J]. Journal of Hazardous Materials, 2013, 250-251: 272-291.

[19]

Jiang B, He H H, Liu Y J, et al. pH-dependent roles of polycarboxylates in electron transfer between Cr(Ⅵ) and weak electron donors[J].Chemosphere, 2018, 197: 367-374. doi: 10.1016/j.chemosphere.2018.01.047

[20]

Li Y Y, Liang J L, Yang Z H, et al. Reduction and immobilization of hexavalent chromium in chromite ore processing residue using amorphous FeS2[J].Science of the Total Environment, 2019, 658: 315-323. doi: 10.1016/j.scitotenv.2018.12.042

[21]

Li D, Ji G Z, Hu J, et al. Remediation strategy and electrochemistry flushing & reduction technology for real Cr(Ⅵ)-contaminated soils[J].Chemical Engineering Journal, 2018, 334: 1281-1288. doi: 10.1016/j.cej.2017.11.074

[22]

Zhang X H, Liu J, Huang H T, et al. Chromium accu-mulation by the hyperaccumulator plant Leersia hexandra Swartz[J].Chemosphere, 2007, 67: 1138-1143. doi: 10.1016/j.chemosphere.2006.11.014

[23]

Bai Y N, Lu Y Z, Shen N, et al. Investigation of Cr(Ⅵ) reduction potential and mechanism by Caldicellulosiruptor saccharolyticus under glucose fermentation condition[J].Journal of Hazardous Materials, 2018, 344: 585-592. doi: 10.1016/j.jhazmat.2017.10.059

[24]

Zhang Q, Amor K, Galer S J G, et al. Variations of stable isotope fractionation during bacterial chromium reduction processes and their implications[J].Chemical Geology, 2018, 481: 155-164. doi: 10.1016/j.chemgeo.2018.02.004

[25]

赵庆令, 安茂国, 陈洪年, 等. 济南市某废弃化工厂区域土壤地球化学特征研究[J]. 岩矿测试, 2018, 37(2): 201-208.

Zhao Q L, An M G, Chen H N, et al. Research on geochemical characteristics of soil in a chemical industrial factory site in Jinan city[J]. Rock and Mineral Analysis, 2018, 37(2): 201-208.

[26]

李玲, 唐晓声, 李海建, 等. 六价铬污染土壤还原稳定修复[J]. 广东化工, 2016, 43(3): 95-96. doi: 10.3969/j.issn.1007-1865.2016.03.049

Li L, Tang X S, Li H J, et al. Reduction and stabilization remediation of hexavalent chromium contaminated soil[J].Guangdong Chemical Industry, 2016, 43(3): 95-96. doi: 10.3969/j.issn.1007-1865.2016.03.049

[27]

纪柱. 含铬的磷酸盐[J]. 无机盐工业, 2005, 37(8): 8-11. doi: 10.3969/j.issn.1006-4990.2005.08.003

Ji Z. Chromium:Containing phosphate[J].Inorganic Chemicals Industry, 2005, 37(8): 8-11. doi: 10.3969/j.issn.1006-4990.2005.08.003

[28]

Gomm J R, Schwenzer B, Morse D E, et al. Textured films of chromium phosphate synthesized by low-temperature vapor diffusion catalysis[J].Solid State Sciences, 2007, 9: 429-431. doi: 10.1016/j.solidstatesciences.2007.03.012

[29]

Li Y Y, Cundy A B, Feng J X, et al. Remediation of hexa-valent chromium contamination in chromite ore processing residue by sodium dithionite and sodium phosphate addition and its mechanism[J].Journal of Environmental Management, 2017, 192: 100-106.

[30]

Markelova E, Couture R M, Parsona C T, et al. Specia-tion dynamics of oxyanion contaminants (As, Sb, Cr) in argillaceous suspensions during oxic-anoxic cycles[J].Applied Geochemistry, 2018, 91: 75-88. doi: 10.1016/j.apgeochem.2017.12.012

相似文献(共19条)

[1]

赖永忠. 减小水样浊度对废水中六价铬测定结果影响的方法探讨. 岩矿测试, 2012, 31(1): 172-177.

[2]

邓日欣, 罗伟嘉, 韩奕彤, 李志雄, 陈家玮. 膨润土负载纳米铁镍同步修复地下水中三氯乙烯和六价铬复合污染. 岩矿测试, 2018, 37(5): 541-548. doi: 10.15898/j.cnki.11-2131/td.201801280013

[3]

, 熊英, 林滨兰. 陕西某汞锑矿含铬废水治理前后全铬及六价铬的测定. 岩矿测试, 2002, (3): 230-232.

[4]

谭科艳, 刘晓端, 刘久臣, 汤奇峰, 黄园英, 罗松光. 凹凸棒石用于修复铜锌镉重金属污染土壤的研究. 岩矿测试, 2011, 30(4): 451-456.

[5]

朱岩, 戚文彬. 离子色谱法测定六价铬和三价铬. 岩矿测试, 1991, (2): 97-99.

[6]

张杰芳, 闫玉乐, 夏承莉, 焦发存, 张海侠. 微波碱消解-电感耦合等离子体发射光谱法测定煤灰中的六价铬. 岩矿测试, 2017, 36(1): 46-51. doi: 10.15898/j.cnki.11-2131/td.2017.01.007

[7]

黄国鑫, 高云鹤, Howard Fallowfield, Huade Guan, 刘菲. 联合脱氮法用于硝酸盐污染地下水修复的机理研究. 岩矿测试, 2012, 31(5): 855-862.

[8]

杨永基, 荣卫民. 化探样品光谱分析—应用两台摄谱仪联合接收法. 岩矿测试, 1988, (1): 43-49.

[9]

刘玉龙, 黄燕高, 刘菲. 气相色谱法测试土壤中分段石油烃的标准化定量方法初探. 岩矿测试, 2019, 38(1): 102-111. doi: 10.15898/j.cnki.11-2131/td.201709040139

[10]

葛江洪, 王英凯, 张旭, 葛艳梅. 黑龙江省特殊景观区化探土壤样品中钼的相态分析方法及应用. 岩矿测试, 2019, 38(2): 222-227. doi: 10.15898/j.cnki.11-2131/td.201611100206

[11]

王玉功, 王华, 刘建军, 余志峰. 沙棘树干茎流液中总氮总磷联合消解的测定方法. 岩矿测试, 2014, 33(5): 665-669.

[12]

徐厚玲, 马玲, 潘同应, 刘文长, 刘洪青. 生态地球化学土壤样品元素形态分析方法研究. 岩矿测试, 2005, (3): 181-188.

[13]

陈燕芳, 刘晓端*, 谭科艳. AB-DTPA提取法在重金属污染土壤修复模拟试验中的应用可行性. 岩矿测试, 2010, 29(2): 131-135.

[14]

王玉学, 郭冬发, 黄秋红, 王哲, 孙伟, 刘立坤. 岩石土壤及沉积物样品中210Pb-210Bi-210Po的快速联合测定. 岩矿测试, 2013, 32(3): 462-468.

[15]

韩秀卿. 石灰岩中游离二氧化硅化学物相分析方法的标准化研究. 岩矿测试, 2000, (4): 259-263.

[16]

丁悌平. 稳定同位素地球化学的现状与展望. 岩矿测试, 1990, (1): 72-77.

[17]

陈江, 姚玉鑫, 费勇, 姚建民, 吴杰. 微波消解等离子体发射光谱和石墨炉原子吸收光谱法联合测定土壤中多元素. 岩矿测试, 2009, 28(1): 25-28.

[18]

熊艳, 钟夏阳, 陈金保. 消解炉消解-氧化还原滴定法测定土壤样品中有机质. 岩矿测试, 2006, 25(2): 191-192.

[19]

徐卫东, 孙 荣, 朱霞萍, 刘平辉. 亚钛还原钒酸铵微量滴定法测定矿石中微量铀方法的改进. 岩矿测试, 2010, 29(3): 325-327.

计量
  • PDF下载量(24)
  • 文章访问量(222)
  • HTML全文浏览量(110)
  • 被引次数(0)
目录

Figures And Tables

化学还原-稳定化联合修复铬污染场地土壤的效果研究

安茂国, 赵庆令, 谭现锋, 王永刚, 李清彩