【引用本文】 谢冰晶, . 单颗粒释光测年技术及其在地质考古中的应用研究进展[J]. 岩矿测试, 2020, 39(4): 493-504. doi: 10.15898/j.cnki.11-2131/td.202002030013
XIE Bing-jing. A Review of Single-grain Optically Stimulated Luminescence Technology and Its Application in Geological Archaeology[J]. Rock and Mineral Analysis, 2020, 39(4): 493-504. doi: 10.15898/j.cnki.11-2131/td.202002030013

单颗粒释光测年技术及其在地质考古中的应用研究进展

中国地质大学(北京), 北京 100083

收稿日期: 2020-02-03  修回日期: 2020-03-08  接受日期: 2020-04-16

基金项目: 中国地质调查局地质调查项目(DD20160055);中央高校基本科研业务费专项资金项目(2652015200)

作者简介: 谢冰晶, 博士, 讲师, 主要从事第四纪地质学、新生代年代学研究工作。E-mail:xiebj@cugb.edu.cn

A Review of Single-grain Optically Stimulated Luminescence Technology and Its Application in Geological Archaeology

China University of Geosciences(Beijing), Beijing 100083, China

Received Date: 2020-02-03
Revised Date: 2020-03-08
Accepted Date: 2020-04-16

摘要:近年来光释光测年在单颗粒技术上的研究取得了一系列重要进展,极大地提高了测年精度,为地质考古测年提供了更大的空间,研究者们对全球重要考古遗址点进行了详细的单颗粒测年,取得诸多考古新发现。单颗粒释光技术是在光释光单片技术上发展而来,对样品的单个石英或长石颗粒进行独立测试,基于单个颗粒测量结果,结合误差理论、统计学分析和样品地质沉积特征分析获得样品的准确年龄。本文结合大量地质考古样品的单颗粒测年数据,重点阐述了单颗粒释光测年技术的原理、发展历程、实验流程、筛选条件和年龄模型。单颗粒释光技术为地质考古的精确定年提供了可能性,尤其是对由于晒退不充分等原因导致的等效剂量分散的样品,如过度分散值(OD)高达20%甚至超过50%的地质考古样品,提供了新的方法和及时支持。通过开展释光测年信号分析,选择不同的单颗粒样品年龄模型分析,可以得到较为可靠的年龄,为诸多地质考古遗迹建立年代学框架。

关键词: 光释光测年, 单颗粒技术, 地质考古, 等效剂量值, 筛选条件, 年龄模型

要点

(1)探讨了单颗粒释光测年的技术优势,提出地质考古年代学研究新方法。

(2)分析了单颗粒释光测年的筛选条件和年龄模型,提出精确定年控制方法。

(3)总结了单颗粒释光技术的发展历程、实验流程与研究难点。

A Review of Single-grain Optically Stimulated Luminescence Technology and Its Application in Geological Archaeology

ABSTRACT

BACKGROUND:

In recent years, a series of important progressions has been made in the study of single-grain technology in optical stimulated luminescence (OSL) dating, which greatly improves the accuracy of dating and provides more space for geological and archaeological dating. A detailed single-grain dating has been carried out in globally important archaeological sites and many new archaeological discoveries have been made. The single-grain OSL technology is developed on the basis of photoluminescence monolithic technology. The single quartz or feldspar grains of the sample are independently tested, and the precise age of the sample is obtained based on the measurement results of a large number of grains, combined with error theory, statistical analysis and geological sedimentation characteristics.

OBJECTIVES:

To understand the development process, experimental process and research difficulties of single-grain OSL technology.

METHODS:

Equivalent dose (De) data were obtained by single-grain OSL dating protocol. Error theory and statistical principle were used for De value analyzing.

RESULTS:

Single-grain OSL dating gets each grain's signal for a sample to determine the De value for a sample, rather than the more conventional single-aliquot approach, which each aliquot consists of several 10-1000s of grains. This method was especially beneficial in archaeological contexts where:(1)An individual grain was the smallest fundamental unit for optical dating, providing detailed information on each grain for sample of interest. (2)Individual grains may respond differently even using the same machine under the same measurement conditions, while multi-grain aliquot cannot distinguish the grains suited to SAR procedure and the grains not, resulting that aliquots can be compromised by these ill-suited grains especially when they dominate the OSL signal. (3)Concerning about post-depositional disturbances, beta microdosimetry, possibility of roof spall contamination and non-homogeneous bleaching, these contaminant grains can be recognized by the distribution pattern of single-grain De values and be removed prior to age calculation. In order to get the exact De, there were 5 rejection and acceptation criteria and 4 age models. Some geological and archaeological samples had over dispersion value (OD) up to 20% or even more than 50% for dark samples. It is important to choose the right rejection and acceptation criteria and age model. This technology can provide new method and necessary support.

CONCLUSIONS:

Single-grain OSL technology provided the possibility of precise geological archaeology, especially for samples with De dispersion due to insufficient bleaching. By carrying out single-grain OSL dating, choosing the right rejection and acceptation criteria and selecting different age models, a more reliable age can be obtained, avoiding wrong De. This method is suitable to establish a chronological framework for many geological and archaeological sites.

KEY WORDS: optically stimulated luminescence (OSL), single-grain technology, geological archaeology, equivalent dose (De), rejection and acceptation criteria, age models

Highlights

(1) The advantages of single-grain OSL technology were discussed and the new dating method for Quaternary archaeological sediments was proposed.

(2) The rejection and acceptance criteria and age models of single-grain OSL technology were investigated, and the method of precise dating was advocated.

(3) The development process, experimental process and research difficulties of single-grain OSL technology were reviewed.

本文参考文献

[1]

Daniels F, Boyd C A, Saunders D F, et al. Thermoluminescence as a research tool[J].Science, 1953, 117: 343-349. doi: 10.1126/science.117.3040.343

[2]

Aitken M J, Tite M S, Reid J, et al. Thermoluminescent dating of ancient ceramics[J]. Nature, 1964, 202: 1032-1033.

[3]

Aitken M J, Tite M S, Reid J, et al. Thermoluminescent dating:Progress report[J].Archaeometry, 1963, 6: 65-75. doi: 10.1111/j.1475-4754.1963.tb00581.x

[4]

Shelkoplyas V N, Morozov G V.Some results of an investi-gation of Quaternary deposits by the thermo-luminescence method[R]//Materials on the Quaternary Period of the Ukraine.Kiev: 7th International Quaternary Association Congress, 1965: 83-90.

[5]

Huntley D J, Godfrey-Smith D I, Thewalt M L W, et al. Optical dating of sediments[J].Nature, 1985, 313: 105-107. doi: 10.1038/313105a0

[6]

Murray A S, Wintle A G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J].Radiation Measurements, 2000, 32: 57-73. doi: 10.1016/S1350-4487(99)00253-X

[7]

王旭龙, 卢演俦, 李晓妮, 等. 细颗粒石英光释光测年:简单多片再生法[J]. 地震地质, 2005, 27(4): 615-623.

Wang X L, Lu Y C, Li X N, et al. Luminescence dating of fine-grained quartz in Chinese loess-Simplified multiple aliquot regenerative-dose (Mar) protocol[J]. Seismology and Geology, 2005, 27(4): 615-623.

[8]

Lamothe M, Balescu S, Auclair M, et al. Natural IRSL intensities and apparent luminescence ages of single feldspar grains extracted from partially bleached sediments[J].Radiation Measurements, 1994, 23: 555-562. doi: 10.1016/1350-4487(94)90099-X

[9]

Murray A S, Olley J M, Caitcheon G C, et al. Measurement of equivalent doses in quartz from contemporary water-lain sediments using optically stimulated luminescence[J].Quaternary Science Reviews, 1995, 14: 365-371. doi: 10.1016/0277-3791(95)00030-5

[10]

Murray A S, Roberts R G. Determining the burial time of single grains of quartz using optically stimulated luminescence[J].Earth and Planetary Science Letters, 1997, 152: 163-180. doi: 10.1016/S0012-821X(97)00150-7

[11]

Roberts R G, Bird M, Olley J M, et al. Optical and radiocarbon dating at Jinmium rock shelter in northern Australia[J].Nature, 1998, 393: 358-362. doi: 10.1038/30718

[12]

Olley J M, De Deckker P, Roberts R G, et al. Optical dating of deep-sea sediments using single grains of quartz:A comparison with radiocarbon[J].Sedimentary Geology, 2004, 169: 175-189. doi: 10.1016/j.sedgeo.2004.05.005

[13]

Roberts R G, Galbraith R F, Olley J M, et al. ptical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia:Part Ⅱ.Results and implications[J].Archaeometry, 1999, 41: 365-395. doi: 10.1111/j.1475-4754.1999.tb00988.x

[14]

Singarayer J S, Bailey R M. Further investigations of the quartz optically stimulated luminescence components using linear modulation[J].Radiation Measurements, 2003, 37: 451-458. doi: 10.1016/S1350-4487(03)00062-3

[15]

Rui X, Li B, Guo Y J, et al. Variability in the thermal stability of OSL signal of single-grain quartz from the Nihewan Basin, North China[J].Quaternary Geochronology, 2019, 49: 25-30. doi: 10.1016/j.quageo.2018.04.011

[16]

Murray A S, Olley J M.Determining sedimentation rates using luminescence dating[M]//Bruns P, Hass H C.Determination of sediment accumulation rates.Switzerland: GeoResearch Forum, 1999: 121-144.

[17]

Olley J M, Pietsch T, Roberts R G, et al. Optical dating of Holocene sediments from a variety of geomorphic setting using single grains of quartz[J].Geomorphology, 2004, 60: 337-358. doi: 10.1016/j.geomorph.2003.09.020

[18]

Duller G A T. Single-grain optical dating of Quaternary sediments:Why aliquot size matters in luminescence dating[J].Boreas, 2008, 37: 589-612. doi: 10.1111/j.1502-3885.2008.00051.x

[19]

赵华, 卢演俦, 王成敏, 等. 水成沉积物释光测年研究进展与展望[J]. 核技术, 2011, 34(2): 82-86.

Zhao H, Lu Y C, Wang C M, et al. A review of OSL dating for water-laid deposits:Progress and prospect[J]. Nuclear Techniques, 2011, 34(2): 82-86.

[20]

Jacobs Z, Roberts R G. Advances in optically stimulated luminescence dating of individual grains of quartz from archeological deposits[J].Evolutionary Anthropology, 2007, 16: 210-223. doi: 10.1002/evan.20150

[21]

Bowler J M, Johnston H, Olley J M, et al. New ages for human occupation and climatic change at Lake Mungo, Australia[J].Nature, 2003, 421: 837-840. doi: 10.1038/nature01383

[22]

Morwood, Brown, Jatmiko, et al. Further evidence for small-bodied hominins from the Late Pleistocene of Flores, Indonesia[J].Nature, 2005, 437: 1012-1017. doi: 10.1038/nature04022

[23]

Marean C W, Bar-Matthews M, Bernatchez J, et al. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene[J].Nature, 2007, 449: 905-908. doi: 10.1038/nature06204

[24]

Brown K S, Marean C W, Jacobs Z, et al. An early and enduring advanced technology originating 71, 000 years ago in South Africa[J].Nature, 2012, 491: 590-593. doi: 10.1038/nature11660

[25]

Hu Y, Marwick B, Zhang J F, et al. Late Middle Pleistocene Levallois stone-tool technology in southwest China[J].Nature, 2019, 565: 82-85. doi: 10.1038/s41586-018-0710-1

[26]

Jacobs Z, Li B, Shunkov M V, et al. Timing of archaic hominin occupation of Denisova Cave in southern Siberia[J].Nature, 2019, 565: 594-599. doi: 10.1038/s41586-018-0843-2

[27]

Li G Q, Jin M, Chen X M, et al. Environmental changes in the Ulan Buh Desert, southern Inner Mongolia, China since the Middle Pleistocene based on sedimentology, chronology and proxy indexes[J].Quaternary Science Reviews, 2015, 128: 69-80. doi: 10.1016/j.quascirev.2015.09.010

[28]

Li G Q, Duan Y W, Huang X Z, et al. The luminescence dating chronology of a deep core from Bosten Lake (NW China) in arid Central Asia reveals lake evolution over the last 220ka[J]. Boreas, 2017, 464: 264-281.

[29]

Li G Q, Yang H, Stevens T, et al. Differential ice volume and orbital modulation of Quaternary moisture patterns between Central and East Asia[J]. Earth and Planetary Science Letters, 2020, 530, 115901.

[30] Aitken M J. Thermoluminescence dating[M] . London: Academic Press, 1985
[31]

Prescott J R, Hutton J T. Cosmic ray contributions to dose rates for luminescence and ESR dating:Large depths and long-term time variations[J].Radiation Measurements, 1994, 23: 497-500. doi: 10.1016/1350-4487(94)90086-8

[32] Aitken M J. An introduction to optical dating:The dating of quaternary sediments by the use of photon-stimulated luminescence[M] . Oxford: Oxford University Press, 1998
[33] Aitken M J. Science-based dating in archaeology[M] . London: Longman, 1990
[34] Duller G A T. Luminescence dating:Guidelines on using luminescence dating in archaeology[M] . Swindon: English Heritage, 2008
[35]

Adamiec G, Aitken M. Dose-rate conversion factors:Update[J]. Ancient TL, 1998, 16(2): 37-50.

[36]

赖忠平, 欧先交. 光释光测年基本流程[J]. 地理科学进展, 2013, 32(5): 683-693.

Lai Z P, Ou X J. Basic procedures of optically stimulated luminescence (OSL) dating[J]. Progress in Geography, 2013, 32(5): 683-693.

[37]

张克旗, 吴中海, 吕同艳, 等. 光释光测年法——综述及进展[J]. 地质通报, 2015, 34(1): 183-203.

Zhang K Q, Wu Z H, Lü T Y, et al. Review and progress of OSL dating[J]. Geological Bulletin of China, 2015, 34(1): 183-203.

[38]

Li S H. Optical dating:Insufficiently bleached sediments[J].Radiation Measurements, 1994, 23: 563-567. doi: 10.1016/1350-4487(94)90100-7

[39]

Rhodes E J, Pownall L. Zeroing of the OSL signal in quartz from young glaciofluvial sediments[J].Radiation Measurements, 1994, 23: 581-585. doi: 10.1016/1350-4487(94)90103-1

[40]

Olley J M, Caitcheon G G, Roberts R G, et al. The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence[J].Radiation Measurements, 1999, 30: 207-217. doi: 10.1016/S1350-4487(99)00040-2

[41]

Bøtter-Jensen L, Bulur E, Duller G A T, et al. Advances in luminescence instrument systems[J].Radiation Measurements, 2000, 32: 523-528. doi: 10.1016/S1350-4487(00)00039-1

[42]

Thomsen K J, Bhtter-Jensen L, Murray A S, et al. Retrospective dosimetry using unheated quartz:A feasibility study[J]. Radiation Protection Dosimetry, 2002, 101(1-4): 345-348.

[43]

Jain M, BHtter-Jensen L, Murray A S, et al. Retrospective dosimetry:Dose evaluation using unheated and heated quartz from a radioactive waste storage building[J]. Radiation Protection Dosimetry, 2002, 101(1-4): 525-530.

[44]

Sohbati R, Murray A, Lindvold L, et al. Optimization of laboratory illumination in optical dating[J].Quaternary Geochronology, 2017, 39: 105-111. doi: 10.1016/j.quageo.2017.02.010

[45]

Wintle A G. Luminescence dating:Laboratory procedures and protocols[J].Radiation Measurements, 1997, 27: 769-817. doi: 10.1016/S1350-4487(97)00220-5

[46]

Bøtter-Jensen L, Andersen C E, Duller G A T, et al. Developments in radiation, stimulation and observation facilities in luminescence measurements[J].Radiation Measurements, 2003, 37: 535-541. doi: 10.1016/S1350-4487(03)00020-9

[47]

Wintle A G, Murray A S. The relationship between quartz thermoluminescence, phototransferred luminescence, and optically stimulated luminescence[J].Radiation Measurements, 1997, 27(4): 611-624. doi: 10.1016/S1350-4487(97)00018-8

[48]

Murray A S, Roberts R G. Measurement of the equi-valent dose in quartz using a regenerative-dose single-aliquot protocol[J].Radiation Measurements, 1998, 29: 503-515. doi: 10.1016/S1350-4487(98)00044-4

[49]

Murray A S, Wintle A G. The single aliquot regenerative dose protocol:Potential for improvements in reliability[J].Radiation Measurements, 2003, 37: 377-381. doi: 10.1016/S1350-4487(03)00053-2

[50]

Wintle A G, Murray A S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols[J].Radiation Measurements, 2006, 41: 369-391. doi: 10.1016/j.radmeas.2005.11.001

[51]

Visocekas R. Tunneling radiative recombination in labradorite:Its association with anomalous fading of thermoluminescence[J].Nuclear Tracks and Radiation Measurements, 1985, 10(4-6): 521-529. doi: 10.1016/0735-245X(85)90053-5

[52]

Visocekas R, Spooner N A, Zink A, et al. Tunnel after glow, fading and infrared-emission in thermo-luminescence of feldspars[J].Radiation Measurements, 1994, 23(2-3): 377-385. doi: 10.1016/1350-4487(94)90067-1

[53]

李国强, 赵晖, 文星, 等. 钾长石矿物在全新世样品光释光测年中的应用与校正问题[J]. 第四纪研究, 2010, 30(1): 54-61.

Li G Q, Zhao H, Wen X, et al. IRSL dating and correction for Holocene samples with K-feldspar[J]. Quaternary Sciences, 2010, 30(1): 54-61.

[54]

Thomsen K J, Murray A S, Jain M, et al. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts[J].Radiation Measurements, 2008, 43(9-10): 1474-1486. doi: 10.1016/j.radmeas.2008.06.002

[55]

Buylaert J P, Murray A S, Thomsen K J, et al. Testing the potential of an elevated temperature IRSL signal from K-feldspar[J].Radiation Measurements, 2009, 44(5-6): 560-565. doi: 10.1016/j.radmeas.2009.02.007

[56]

Thiel C, Buylaert J P, Murray A, et al. Luminescence dating of the stratzing loess profile (Austria)-Testing the potential of an elevated temperature post-IR IRSL protocol[J].Quaternary International, 2011, 234(1-2): 23-31. doi: 10.1016/j.quaint.2010.05.018

[57]

Li B, Jacobs Z, Roberts R G, et al. Review and assess-ment of the potential of post-IR IRSL dating methods to circumvent the problem of anomalous fading in feldspar luminescence[J].Geochronometria, 2014, 41(3): 178-201. doi: 10.2478/s13386-013-0160-3

[58]

Duller G A T. Distinguishing quartz and feldspar in single grain luminescence measurements[J].Radiation Measurements, 2003, 37: 161-165. doi: 10.1016/S1350-4487(02)00170-1

[59]

Jacobs Z, Duller G A T, Wintle A G, et al. Optical dating of dune sand from Blombos Cave, South Africa:Ⅱ-Single grain data[J].Journal of Human Evolution, 2003, 44: 613-625. doi: 10.1016/S0047-2484(03)00049-6

[60]

Jacobs Z, Duller G A T, Wintle A G, et al. Interpretation of single grain De distributions and calculation of De[J].Radiation Measurements, 2006, 41: 264-277. doi: 10.1016/j.radmeas.2005.07.027

[61]

Durcan J A, Duller G A T. The fast ratio:A rapid measure for testing the dominance of the fast component in the initial OSL signal from quartz[J].Radiation Measurements, 2011, 46: 1065-1072. doi: 10.1016/j.radmeas.2011.07.016

[62]

Li B, Li S H. Comparison of De estimates using the fast component and the medium component of quartz OSL[J].Radiation Measurements, 2006, 41: 125-136. doi: 10.1016/j.radmeas.2005.06.037

[63]

Ballarini M, Wallinga J, Wintle A G, et al. A modified SAR protocol for optical dating of individual grains from young quartz samples[J].Radiation Measurements, 2007, 42: 360-369. doi: 10.1016/j.radmeas.2006.12.016

[64]

Cunningham A C, Wallinga J. Selection of integration time-intervals for quartz OSL decay curves[J].Quaternary Geochronology, 2010, 5: 657-666. doi: 10.1016/j.quageo.2010.08.004

[65]

Madsen A T, Duller G A T, Donnelly J P, et al. A chronology of hurricane landfalls at Little Sippewissett Marsh, Massachusetts, USA, using optical dating[J].Geomorphology, 2009, 109: 36-45. doi: 10.1016/j.geomorph.2008.08.023

[66]

Truscott A J, Duller G A T, Bøtter-Jensen L, et al. Reproducibility of optically stimulated luminescence measurements from single grains of Al2O3:C and annealed quartz[J].Radiation Measurements, 2000, 32: 447-451. doi: 10.1016/S1350-4487(00)00080-9

[67]

Li B. A note on estimating the error when subtracting background counts from weak OSL signals[J]. Ancient TL, 2007, 25(1): 9-14.

[68]

Duller G A T. Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements[J]. Ancient TL, 2007, 25(1): 15-24.

[69]

Adamiec G, Heer A J, Bluszcz A, et al. Statistics of count numbers from a photomultiplier tube and its implications for error estimation[J].Radiation Measurements, 2012, 47: 746-751. doi: 10.1016/j.radmeas.2011.12.009

[70]

Galbraith R F. A further note on the variance of a background-corrected OSL count[J].Ancient TL, 2014, 32(1): 1-4.

[71]

Li B, Jacobs Z, Roberts R G, et al. Variability in quartz OSL signals caused by measurement uncertainties:Problems and solutions[J].Quaternary Geochronology, 2017, 41: 11-25. doi: 10.1016/j.quageo.2017.05.006

[72]

Galbraith R F, Roberts R G, Yoshida H, et al. Error variation in OSL palaeodose estimates from single aliquots of quartz:A factorial experiment[J].Radiation Measurements, 2005, 39: 289-307. doi: 10.1016/j.radmeas.2004.03.023

[73]

Lian O B, Roberts R G. Dating the Quaternary:Progress in luminescence dating of sediments[J].Quaternary Science Reviews, 2006, 25: 2449-2468. doi: 10.1016/j.quascirev.2005.11.013

[74]

Galbraith R F. Graphical display of estimates having differing standard errors[J].Technometrics, 1988, 30: 271-281. doi: 10.1080/00401706.1988.10488400

[75]

Galbraith R F. The radial plot:Graphical assessment of spread in ages[J].Nuclear Tracks and Radiation Measurements, 1990, 17: 207-214. doi: 10.1016/1359-0189(90)90036-W

[76]

Galbraith R F, Roberts R G, Laslett G M, et al. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia:Part Ⅰ, experimental design and statistical models[J].Archaeometry, 1999, 41: 339-364. doi: 10.1111/j.1475-4754.1999.tb00987.x

[77]

Jacobs Z, Duller G A T, Wintle A G, et al. Extending the chronology of deposits at Blombos Cave, South Africa, back to 140ka using optical dating of single and multiple grains of quartz[J].Journal of Human Evolution, 2006, 51: 255-273. doi: 10.1016/j.jhevol.2006.03.007

[78]

Olley J M, Roberts R G, Yoshida H, et al. Single-grain optical dating of grave-infill associated with human burials at Lake Mungo, Australia[J].Quaternary Science Reviews, 2006, 25: 2469-2474. doi: 10.1016/j.quascirev.2005.07.022

[79]

Galbraith R F. The trouble with "probability density" plots of fission track ages[J].Radiation Measurements, 1998, 29: 125-131. doi: 10.1016/S1350-4487(97)00247-3

[80]

Galbraith R F, Roberts R G. Statistical aspects of equivalent dose and error calculation and display in OSL dating:An overview and some recommendations[J].Quaternary Geochronology, 2012, 11: 1-27. doi: 10.1016/j.quageo.2012.04.020

[81]

Roberts R G, Walsh G, Murray A S, et al. Luminescence dating of rock art and past environments using mud-wasp nests in northern Australia[J].Nature, 1997, 387: 696-699. doi: 10.1038/42690

[82]

Yoshida H, Roberts R G, Olley J M, et al. Progress towards single-grain optical dating of fossil mud-wasp nests and associated rock art in northern Australia[J].Quaternary Science Reviews, 2003, 22: 1273-1278. doi: 10.1016/S0277-3791(03)00076-3

[83]

Feathers J K, Holliday V T, Meltzer D J, et al. Optically stimulated luminescence dating of southern high plains archaeological sites[J].Journal of Archaeological Science, 2006, 33: 1651-1665. doi: 10.1016/j.jas.2006.02.013

[84]

Bateman M D, Boulter C H, Carr A S, et al. Detecting post-depositional sediment disturbance in sandy deposits using optical luminescence[J].Quaternary Geochronology, 2007, 2: 57-64. doi: 10.1016/j.quageo.2006.05.004

[85]

Rittenour T M. Luminescence dating of fluvial deposits:Applications to geomorphic, palaeoseismic and archaeological research[J].Boreas, 2008, 37: 613-635. doi: 10.1111/j.1502-3885.2008.00056.x

[86]

Jacobs Z, Roberts R G, Galbraith R F, et al. Ages for the Middle Stone Age of southern Africa:Implications for human behavior and dispersal[J].Science, 2008, 322: 733-735. doi: 10.1126/science.1162219

[87]

Arnold L J, Roberts R G, Galbraith R F, et al. A revised burial dose estimation procedure for optical dating of young and modern-age sediments[J].Quaternary Geochronology, 2009, 4: 306-325. doi: 10.1016/j.quageo.2009.02.017

[88]

Lombard M, Wadley L, Jacobs Z, et al. Still bay and serrated points from Umhlatuzana rock shelter, Kwazulu-Natal, South Africa[J].Journal of Archaeological Science, 2010, 37: 1773-1784. doi: 10.1016/j.jas.2010.02.015

[89]

Anderson A, Roberts R, Dickinson W, et al. Times of sand:Sedimentary history and archaeology at the Sigatoka Dunes, Fiji[J].Geoarchaeology, 2006, 21: 131-154. doi: 10.1002/gea.20094

[90]

Arnold L J, Roberts R G. Stochastic modelling of multi-grain equivalent dose (De) distributions:Implications for OSL dating of sediment mixtures[J].Quaternary Geochronology, 2009, 4: 204-230. doi: 10.1016/j.quageo.2008.12.001

[91]

David B, Roberts R G, Magee J, et al. Sediment mixing at Nonda rock:Investigations of stratigraphic integrity at an early archaeological site in northern Australia, and implications for the human colonisation of the continent[J].Journal of Quaternary Science, 2007, 22: 449-479. doi: 10.1002/jqs.1136

[92]

Jacobs Z, Wintle A G, Duller G A T, et al. New ages for the Post-Howiesons Poort, late and final Middle Stone Age at Sibudu, South Africa[J].Journal of Archaeological Science, 2008, 35: 1790-1807. doi: 10.1016/j.jas.2007.11.028

[93]

Feathers J, Kipnis R, Piló L, et al. How old is Luzia? Luminescence dating and stratigraphic integrity at Lapa Vermelha, Lagoa Santa, Brazil[J]. Geoarchaeology, 2010, 25: 395-436.

[94]

Armitage S J, Jasim S A, Marks A E, et al. The southern route "out of Africa":Evidence for an early expansion of modern humans into Arabia[J].Science, 2011, 331: 453-456. doi: 10.1126/science.1199113

[95]

Roberts R G, Galbraith R F, Yoshida H, et al. Distinguishing dose populations in sediment mixtures:A test of single-grain optical dating procedures using mixtures of laboratory-dosed quartz[J].Radiation Measurements, 2000, 32: 459-465. doi: 10.1016/S1350-4487(00)00104-9

[96] Galbraith R F. Statistics for fission track analysis[M] . Boca Raton: Chapman & Hall/CRC Press, 2005
[97]

Roberts R G, Yoshida H, Galbraith R, et al. Single-aliquot and single-grain optical dating confirm thermoluminescence age estimates at Malakunanja Ⅱ rock shelter in northern Australia[J]. Ancient TL, 1998, 16: 19-24.

[98]

Jacobs Z.Testing and demonstrating the stratigraphic integrity of artefacts from MSA deposits at Blombos Cave, South Africa[M]//d'Errico F, Backwell L.From tools to symbols.From early hominids to modern humans[M].Johannesburg: Wits University Press, 2005: 459-474.

[99]

Rodnight H. How many equivalent dose values are needed to obtain a reproducible distribution?[J]. Ancient TL, 2008, 26: 3-9.

相似文献(共18条)

[1]

富云莲. 计算^40Ar/^39Ar坪年龄的数据筛选程序. 岩矿测试, 1989, (3): 225-227.

[2]

邱华宁, 胡世玲, 许景荣, 蒲志平, 张永良. 激光探针质谱及单颗粒矿物^40Ar/^39Ar法年龄的测定. 岩矿测试, 1997, (1): 1-6.

[3]

李荣春, 卫敬生. RG—1型单波长冷原子吸收热释测汞仪. 岩矿测试, 1999, (3): 205-210.

[4]

凌进中. 地质标准物质中痕量元素量值溯源性探讨. 岩矿测试, 2000, (3): 188-193.

[5]

地矿部岩矿测试所试验小组. 国产7502型ICP—AES光量计在地质样品分析中的试用. 岩矿测试, 1985, (4): 371-374.

[6]

曾载淋, 刘善宝, 邓茂春, 黄凡, 陈毓川, 赖志坚, 屈文俊. 江西广昌新安钼矿床地质特征及其铼-锇同位素测年. 岩矿测试, 2011, 30(2): 144-149.

[7]

李志雄, 韩奕彤, 徐永强, 杨洋, 陈家玮. 动态光散射技术原位表征天然有机质存在下纳米零价铁的团聚效应. 岩矿测试, 2016, 35(6): 634-641. doi: 10.15898/j.cnki.11-2131/td.2016.06.010

[8]

汪双双, 韩延兵, 李艳广, 魏小燕, 靳梦琪, 程秀花. 利用LA-ICP-MS在16 μm和10 μm激光束斑条件下测定独居石U-Th-Pb年龄. 岩矿测试, 2016, 35(4): 349-357. doi: 10.15898/j.cnki.11-2131/td.2016.04.003

[9]

侯可军, 陈振宇, 王登红, 陈郑辉, 赵正. 赣南兴国杨村岩体锆石U-Pb年龄测定及其地质意义. 岩矿测试, 2012, 31(3): 549-553.

[10]

李丽侠, 陈郑辉, 施光海, 张思明, 屈文俊, 应立娟, 秦燕, 丁琼. 江西岿美山钨矿矿床的成矿年龄及地质特征. 岩矿测试, 2014, 33(2): 287-295.

[11]

孙艳, 高允, 王登红, 代鸿章, 顾文帅, 李建, 张丽红. 重庆铜梁地区“绿豆岩”中碎屑锆石U-Pb年龄及其地质意义. 岩矿测试, 2017, 36(6): 649-658. doi: 10.15898/j.cnki.11-2131/td.201702220022

[12]

汪绍年. 大容山花岗岩形成的物理化学条件和地质背景推测. 岩矿测试, 1983, (1): 12-16.

[13]

肖锐, 梁汉东, F.Adams, 刘成德, 董树屏. 北京市春夏季大气气溶胶的单颗粒分析表征. 岩矿测试, 2004, (2): 125-131.

[14]

李向辉, 陈福坤, 李秋立, 王秀丽, 王芳. 静态测量方式的单颗粒锆石蒸发铅同位素定年方法. 岩矿测试, 2006, 25(3): 201-205.

[15]

朱继浩, 初凤友. 单颗粒电子探针能谱定量分析方法研究进展. 岩矿测试, 2010, 29(6): 746-754.

[16]

胡俊栋, 刘崴, 沈亚婷, 路国慧. 天然有机质存在条件下的纳米颗粒与重金属协同行为研究. 岩矿测试, 2013, 32(5): 669-680.

[17]

杜安道, 屈文俊. 高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼-锇地质年龄. 岩矿测试, 2003, (4): 254-257262.

[18]

余明刚, 赵希林, 钱迈平, 段政, 张雪辉, 万浩章, 肖茂章, 孙建东. 江西冷水坑火山-侵入杂岩LA-ICP-MS锆石U-Pb年龄及地质意义. 岩矿测试, 2015, 34(1): 138-149. doi: 10.15898/j.cnki.11-2131/td.2015.01.018

计量
  • PDF下载量(8)
  • 文章访问量(181)
  • HTML全文浏览量(49)
  • 被引次数(0)
目录

Figures And Tables

单颗粒释光测年技术及其在地质考古中的应用研究进展

谢冰晶