【引用本文】 谢曼曼, 刘美美, 王淑贤, 等. 土壤中多环芳烃单体碳同位素分析的分离净化方法研究[J]. 岩矿测试, 2021, 40(6): 962-972. doi: 10.15898/j.cnki.11-2131/td.202109280131
XIE Man-man, LIU Mei-mei, WANG Shu-xian, et al. Study on Separation of Polycyclic Aromatic Hydrocarbons in Soils for Compound-specific Carbon Isotope Analysis[J]. Rock and Mineral Analysis, 2021, 40(6): 962-972. doi: 10.15898/j.cnki.11-2131/td.202109280131

土壤中多环芳烃单体碳同位素分析的分离净化方法研究

1. 

国家地质实验测试中心, 北京 100037

2. 

中国地质科学院地质研究所, 北京 100037

收稿日期: 2021-09-28  修回日期: 2021-10-25  接受日期: 2021-11-12

基金项目: 国家自然科学基金青年基金项目(41302141);中国地质科学院基本科研业务费项目(CSJ202109)

作者简介: 谢曼曼, 博士, 助理研究员, 从事有机地球化学生物标记物同位素研究。E-mail: xiemm827@163.com

通信作者: 王淑贤, 高级工程师, 研究方向为分析化学。E-mail: 1009718437@qq.com孙青, 博士, 研究员, 研究方向为地球化学。E-mail: sunqingemail@yahoo.com

Study on Separation of Polycyclic Aromatic Hydrocarbons in Soils for Compound-specific Carbon Isotope Analysis

1. 

National Research Center of Geoanalysis, Beijing 100037, China

2. 

Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China

Corresponding author: WANG Shu-xian, 1009718437@qq.comCorresponding author: SUN Qing, sunqingemail@yahoo.com

Received Date: 2021-09-28
Revised Date: 2021-10-25
Accepted Date: 2021-11-12

摘要:应用单体碳同位素组成追溯多环芳烃(PAHs)类污染物的来源越来越受关注。单体同位素分析中,利用样品预处理减少共流出和未分峰(UCM),是实现同位素比值准确分析的重要前提。已有分离净化研究较少关注环数小于3的PAHs;或需联合使用高效液相色谱(HPLC)技术,但对实验室条件要求较高。本文期望避免使用HPLC技术,仅通过简单的固相萃取法,实现16种PAHs的分离净化,满足包括低环数在内的PAHs单体碳同位素分析的要求。实验对比了氨基和硅胶两种填料的固相萃取(SPE)小柱,以及正戊烷等10种淋洗溶剂对PAHs的分离净化富集效果。结果表明:氨基小柱中有20%以上的萘和苊不能与烷烃和未分峰完全分离,硅胶SPE小柱除杂效果和分离效果优于氨基小柱。选择1000mg/6mL硅胶SPE小柱,利用6mL正戊烷淋洗UCM和烷烃,5mL正戊烷-二氯甲烷(70:30,V/V)洗脱PAHs。利用气相色谱(GC)对分离净化效果进行初步检验,气体同位素质谱(GC-IRMS)进行单体碳同位素分析。16种PAHs的回收率为79%~128%,相对标准偏差为2%~13%(1σn=6),单体碳同位素比值(δ13C)分析精度为0.1‰~0.75‰,大幅降低了其中UCM和共流出对PAH单体碳同位素分析的干扰,尤其减少了对低环数PAHs单体碳同位素分析的影响,而且净化过程没有造成PAHs单体碳同位素分馏,满足PAHs单体碳同位素分析的要求。

关键词: 土壤, 多环芳烃, 单体碳同位素, 固相萃取, 分离净化, 气体同位素质谱法

要点

(1) 采用硅胶固相萃取法分离净化土壤中多环芳烃,对前处理实验室的要求大大降低。

(2) 采用改进的硅胶固相萃取净化方法,大幅降低了UCM和共流出的干扰,改善低分子量多环芳烃的净化效果。

(3) 前处理过程没有造成目标化合物的碳同位素分馏,可以满足PAHs单体碳同位素准确、高精度分析。

Study on Separation of Polycyclic Aromatic Hydrocarbons in Soils for Compound-specific Carbon Isotope Analysis

ABSTRACT

BACKGROUND:

Tracing the source of polycyclic aromatic hydrocarbons (PAHs) by the compound-specific carbon isotope is becoming increasingly popular. For precise carbon isotope analysis, a pretreatment process is required to reduce co-outflow and unresolved complex mixture (UCM). Some existing studies require more instrumentation, such as high-performance liquid chromatography (HPLC). In addition, little attention has been paid to PAHs with a ring number less than 3.

OBJECTIVES:

To establish a good separation method of 16 PAHs for meeting the requirements of compound-specific carbon isotope analysis.

METHODS:

The effects of solid phase extraction (SPE) cartridges with amino and silica fillers were compared, and 10 eluent solvents were used on the separation, purification and enrichment effects of PAHs. Gas chromatography (GC) was used to test the separation and purification effect, and gas chromatography-isotope ratio mass spectrometry (GC-IRMS) was used to analyze compound-specific carbon isotopes.

RESULTS:

More than 20% of the naphthalene and acenaphthene in the amino cartridge cannot be completely separated from the alkanes and unresolved peaks. The silica gel SPE cartridge has better impurity removal and separation effects than the amino cartridge. Choosing 1000mg/6mL silica gel SPE cartridge, using 6mL n-pentane to elute UCM and alkanes, and 5mL n-pentane-dichloromethane (70:30, V/V) to elute PAHs, and GC to conduct a preliminary inspection of the separation and purification effect, and GC-IRMS for individual carbon isotope analysis. The recovery of 16 kinds of PAHs was 79%-128%, the relative standard deviation was 2%-13% (1σ, n=6), and the analysis accuracy of the single carbon isotope ratio (δ13C) was 0.1‰-0.75‰.

CONCLUSIONS:

The method greatly reduces the interferences of co-outflow and UCM to compound-specific carbon isotope analysis of PAHs, especially the low cyclic PAHs. No significant carbon isotope fractionation of PAHs is observed during purification, which satisfies compound-specific carbon isotope analysis requirements.

KEY WORDS: soil, polycyclic aromatic hydrocarbons, compound-specific carbon isotope, solid-phase extraction, separation, gas isotope ratio mass spectrometry

HIGHLIGHTS

(1) Purification of polycyclic aromatic hydrocarbons (PAHs) in soil by silica gel solid-phase extraction reduces the requirement of a pretreatment laboratory.

(2) The purification effect of low molecular weight PAHs can be improved by using the silica gel solid-phase extraction because the interferences of unresolved complex mixture (UCM) and co-outflow are significantly reduced.

(3) The pretreatment process does not cause carbon isotope fractionation of the target compounds, which provides the means for accurate and high-precision analysis of compound-specific carbon isotope of PAHs.

本文参考文献

[1]

Ye X Q, Pan W Y, Li C M, et al. Exposure to polycyclic aromatic hydrocarbons and risk for premature ovarian failure and reproductive hormones imbalance[J].Journal of Environmental Sciences, 2020, 91: 1-9. doi: 10.1016/j.jes.2019.12.015

[2]

Hou J, Yin W J, Li P, et al. Joint effect of polycyclic aromatic hydrocarbons and phthalates exposure on telomere length and lung function[J]. Journal of Hazardous Materials, 2019, 386: 121663.

[3]

Tang J, An T C, Xiong J K, et al. The evolution of pollution profile and health risk assessment for three groups SVOCs pollutants along with Beijiang River, China[J].Environmental Geochemistry and Health, 2017, 39: 1487-1499. doi: 10.1007/s10653-017-9936-3

[4]

李玉芳, 潘萌, 顾涛, 等. 北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征[J]. 岩矿测试, 2020, 39(4): 578-586.

Li Y F, Pan M, Gu T, et al. Exposure of mother and infants to polycyclic aromatic hydrocarbons during lactation, Beijing[J]. Rock and Mineral Analysis, 2020, 39(4): 578-586.

[5]

姜永海, 韦尚正, 席北斗, 等. PAHs在我国土壤中的污染现状及其研究进展[J]. 生态环境学报, 2009, 18(3): 1176-1181. doi: 10.3969/j.issn.1674-5906.2009.03.067

Jiang Y H, Wei S Z, Xi B D, et al. Polycyclic aromatic hydrocarbons (PAHs) pollution in soils in China: Recent advances and future prospects[J].Ecology and Environmental Sciences, 2009, 18(3): 1176-1181. doi: 10.3969/j.issn.1674-5906.2009.03.067

[6]

苑金鹏, 钟宁宁, 吴水平, 等. 土壤中多环芳烃的稳定碳同位素特征及其对污染源示踪意义[J]. 环境科学学报, 2005, 25(1): 81-85. doi: 10.3321/j.issn:0253-2468.2005.01.014

Yuan J P, Zhong N N, Wu S P, et al. Stable carbon isotopic composition of polycyclic aromatic hydrocarbons in soil and its implications for the pollutants tracing[J].Acta Scientiae Circumstantiae, 2005, 25(1): 81-85. doi: 10.3321/j.issn:0253-2468.2005.01.014

[7]

李琪, 李钜源, 窦月芹, 等. 淮河中下游沉积物PAHs的稳定碳同位素源解析[J]. 环境科学研究, 2012, 25(6): 672-677.

Li Q, Li J Y, Dou Y Q, et al. Compound-specific stable carbon isotopic analysis on origins of PAHs in sediments from the middle and lower reaches of the Huaihe River[J]. Research of Environmental Sciences, 2012, 25(6): 672-677.

[8]

白慧玲, 彭林, 刘效峰, 等. 太原市工、商业区PM10中PAHs碳同位素组成及来源[J]. 环境科学研究, 2013, 26(12): 1276-1282.

Bai H L, Peng L, Liu X F, et al. Carbon isotope compositions and source apportionment of PAHs associated with PM10 of industrial and commercial districts in Taiyuan City[J]. Research of Environmental Sciences, 2013, 26(12): 1276-1282.

[9]

焦杏春, 王广, 叶传永, 等. 应用单体碳同位素分析技术探析农田土壤中多环芳烃的植物降解过程[J]. 岩矿测试, 2014, 33(6): 863-870.

Jiao X C, Wang G, Ye C Y, et al. Study on the phytodegradation of PAHs from farmland soil using compound-specific isotope analysis technique[J]. Rock and Mineral Analysis, 2014, 33(6): 863-870.

[10]

Vasil'Chuk Y K, Belik A D, Budantseva N A, et al. Polycyclic aromatic hydrocarbons and carbon isotopes in a palsa peat (Bol 'shezemel' skaya Tundra)[J].Eurasian Soil Science, 2021, 54(7): 999-1006. doi: 10.1134/S1064229321070139

[11]

Garbariene I, Garbaras A, Masalaite A, et al. Identification of wintertime carbonaceous fine particulate matter (PM2.5) sources in Kaunas, Lithuania using polycyclic aromatic hydrocarbons and stable carbon isotope analysis[J].Atmospheric Environment, 2020, 237: 117673. doi: 10.1016/j.atmosenv.2020.117673

[12]

陆燕, 王小云, 曹建平, 等. 沉积物中16种多环芳烃单体碳同位素GC-C-IRMS测定[J]. 石油实验地质, 2018, 40(4): 532-537.

Lu Y, Wang X Y, Cao J P, et al. Compound-specific carbon stable isotope analysis of 16 polycyclic aromatic hydrocarbons in sediments by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS)[J]. Petroleum Geology and Experiment, 2018, 40(4): 532-537.

[13]

史兵方, 杨秀培, 唐婧, 等. 荧光法测定土壤中总的多环芳烃含量[J]. 环境科学导刊, 2007, 26(4): 91-93. doi: 10.3969/j.issn.1673-9655.2007.04.029

Shi B F, Yang X P, Tang J, et al. Determination of total polycyclic aromatic hydrocarbons in soil by fluorescence[J].Environmental Science Survey, 2007, 26(4): 91-93. doi: 10.3969/j.issn.1673-9655.2007.04.029

[14]

倪进治, 王军, 李小燕, 等. 超高效液相色谱荧光检测器测定土壤中多环芳烃[J]. 分析试验室, 2010, 29(5): 25-28. doi: 10.3969/j.issn.1000-0720.2010.05.007

Ni J Z, Wang J, Li X Y, et al. Determination of polycyclic aromatic hydrocarbons in soil by ultra performance liquid chromatography with a fluorescence detector[J].Chinese Journal of Analysis Laboratory, 2010, 29(5): 25-28. doi: 10.3969/j.issn.1000-0720.2010.05.007

[15]

张道来, 刘娜, 朱志刚, 等. 山东半岛典型海岸带多环芳烃分布特征、来源解析及风险评价[J]. 岩矿测试, 2016, 35(5): 521-529.

Zhang D L, Liu N, Zhu Z G, et al. Sources and risk assessment of polycyclic aromatic hydrocarbon in surface sediments from typical coast of Shandong Peninsulia[J]. Rock and Mineral Analysis, 2016, 35(5): 521-529.

[16]

陶鑫, 全洗强, 俞建国, 等. 加速溶剂萃取-旋蒸定容-高效液相色谱法检测土壤中16种多环芳烃[J]. 环境化学, 2019, 38(12): 2797-2807. doi: 10.7524/j.issn.0254-6108.2019041705

Tao X, Quan X Q, Yu J G, et al. Analysis of 16 polycyclic aromatic hydrocarbons in soil with accelerated solvent extraction, rotary evaporation for obtain a constant volume and high performance liquid chromatography[J].Environmental Chemistry, 2019, 38(12): 2797-2807. doi: 10.7524/j.issn.0254-6108.2019041705

[17]

张小辉, 王晓雁. 气相色谱-质谱联用法测定土壤中16种多环芳烃[J]. 岩矿测试, 2010, 29(5): 535-538. doi: 10.3969/j.issn.0254-5357.2010.05.012

Zhang X H, Wang X Y. Determination of 16 polycyclic aromatic hydrocarbons in soils by gas chromatography-mass spectrometry[J]. Rock and Mineral Aanlysis, 2010, 29(5): 535-538. doi: 10.3969/j.issn.0254-5357.2010.05.012

[18]

王海娇, 王娜, 宋丽华, 等. GC-MS-MS法测定土壤中的16种多环芳烃[J]. 分析试验室, 2010, 29(S1): 412-414.

Wang H J, Wang N, Song L H, et al. Determination of 16 polycyclic aromatic hydrocarbons in soil by GC-MS-MS[J]. Chinese Journal of Analysis Laboratory, 2010, 29(S1): 412-414.

[19]

Merritt D A, Brand W A, Hayes J M, et al. Isotope-ratio-monitoring gas chromatography-mass spectrometry: Methods for isotopic calibration[J].Organic Geochemistry, 1994, 21(6-7): 573-583. doi: 10.1016/0146-6380(94)90003-5

[20]

Hayes J M, Freeman K H, Popp B N, et al. Compound-specific isotopic analyses: A novel tool for reconstruction of ancient biogeochemical processes[J].Organic Geochemistry, 1990, 16(4-6): 1115-1128. doi: 10.1016/0146-6380(90)90147-R

[21]

Okuda T, Naraoka H, Ishiwatari R, et al. Spearation of PAHs in environmental samples by use of solid-phase extraction system for carbon isotope analysis[J].Journal of the Mass Spectrometry Society of Japan, 2000, 48(6): 387-394. doi: 10.5702/massspec.48.387

[22]

O'Malley V P, Abrajanojr T A, Hellou J, et al. Determination of the 13C/12C ratios of individual PAH from environmental samples: Can PAH sources be apportioned?[J].Organic Geochemistry, 1994, 21(6-7): 809-822. doi: 10.1016/0146-6380(94)90022-1

[23]

Delhomme O, Rieb E, Millet M, et al. Solid-phase extraction and LC with fluorescence detection for analysis of PAHs in rainwater[J].Chromatographia, 2007, 65(3-4): 163-171. doi: 10.1365/s10337-006-0144-z

[24]

Kiss G, Varga-Puchony Z, Hlavay J, et al. Determination of polycyclic aromatic hydrocarbons in precipitation using solid-phase extraction and column liquid chromato-graphy[J].Journal of Chromatography A, 1996, 725: 261-272. doi: 10.1016/0021-9673(95)00940-X

[25]

Liu X, Bi X, Mai B, et al. Separation of PAHs in aerosol by thin layer chromatography for compound-specific stable carbon isotope analysis[J].Talanta, 2005, 66: 487-494. doi: 10.1016/j.talanta.2004.11.017

[26]

Mazeas L, Budzinski H. Polycyclic aromatic hydrocarbon 13C/12C ratio measurement in petroleum and marine sediments: Application to standard reference materials and a sediment suspected of contamination from the Erika oil spill[J].Journal of Chromatography A, 2001, 923: 165-176. doi: 10.1016/S0021-9673(01)00911-6

[27]

Yan B, Abrajano T A, Bopp R F, et al. Combined application of δ13C and molecular ratios in sediment cores for PAH source apportionment in the New York/New Jersey harbor complex[J].Organic Geochemistry, 2006, 37: 674-687. doi: 10.1016/j.orggeochem.2006.01.013

[28] Kim M. Stable carbon isotope ratio of polycyclic aromatic hydrocarbons (PAHs) in the environment: Validation of isolation and stable carbon isotope analysis methods[M] . Texas: Texas A & M University, 2004: 50-70.
[29]

刘盛兰, 秦艳, 刘洪林, 等. 内蒙古草原土壤有机物提取分离及鉴定[J]. 土壤学报, 2017, 54(6): 1459-1470.

Liu S L, Qin Y, Liu H L, et al. Isolation and identification of soil organic matter in Inner Mongolia grassland[J]. Acta Pedologica Sinica, 2017, 54(6): 1459-1470.

[30]

Naafs D F W, van Bergen P F, Boogert S J, et al. Solvent-extractable lipids in an acid andic forest soil; variations with depth and season[J].Soil Biology and Biochemistry, 2004, 36: 297-308. doi: 10.1016/j.soilbio.2003.10.005

[31]

Morley C P, Mainwaring K A, Doerr S H, et al. Organic compounds at different depths in a sandy soil and their role in water repellency[J].Australian Journal of Soil Research, 2005, 43: 239-249. doi: 10.1071/SR04094

[32]

Atanassova I, Doerr S. Organic compounds of different extractability in total solvent extracts from soils of contrasting water repellency[J].European Journal of Soil Science, 2010, 61: 298-313. doi: 10.1111/j.1365-2389.2009.01224.x

[33]

Kumar A, Chahal K K, Kataria D, et al. Comparison of chemical composition of root and rhizosphere soil extracts of tagete spatula L.: GC-MS analysis[J].Asian Journal of Chemistry, 2017, 29(4): 797-800. doi: 10.14233/ajchem.2017.20307

[34]

何文珊, 李琳, 李炎, 等. 生姜不同有机溶剂提取物的GC-MS分析[J]. 热带亚热带植物学报, 2001, 9(2): 154-158. doi: 10.3969/j.issn.1005-3395.2001.02.012

He W S, Li L, Li Y, et al. GC-MS analysis of different solvent extracts of ginger[J].Journal of Tropical and Subtropical Botany, 2001, 9(2): 154-158. doi: 10.3969/j.issn.1005-3395.2001.02.012

[35]

罗庆, 王诗雨, 孙丽娜, 等. 同时加速溶剂萃取/气相色谱-质谱法测定植物中13种有机磷酸酯[J]. 分析测试学报, 2018, 37(1): 50-56. doi: 10.3969/j.issn.1004-4957.2018.01.008

Luo Q, Wang S Y, Sun L N, et al. Determination of determination of thirteen organophosphate esters in plants using gas chromatography-mass spectrometry with simultaneously accelerated solvent extraction[J].Journal of Instrumental Analysis, 2018, 37(1): 50-56. doi: 10.3969/j.issn.1004-4957.2018.01.008

[36]

Wise S A, Chesler S N, Hertz H S, et al. Chemically-bonded aminosilane stationary phase for the high-performance liquid chromatographic separation of polynuclear aromatic compounds[J].Analytical Chemistry, 1977, 49(14): 2306-2310. doi: 10.1021/ac50022a049

相似文献(共20条)

[1]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[2]

孙玮琳, 沈斌, 汪双清, 龚迎莉. 自然水体和土壤中氯代烃和芳香烃类化合物分析测试方法研究. 岩矿测试, 2008, 27(3): 174-178.

[3]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[4]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[5]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[6]

张逐月, 刘美美, 谢曼曼, 王道聪, 凌媛, 尚文郁, 刘舒波, 岑况, 孙青. 5A分子筛吸附混合溶剂洗脱-气相色谱-同位素质谱分析土壤中正构烷烃单体碳同位素. 岩矿测试, 2012, 31(1): 178-183.

[7]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[8]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[9]

焦杏春, 王广, 叶传永, 曹红英, 王晓春, 杨永亮, 刘晓端. 应用单体碳同位素技术探析农田土壤中多环芳烃的植物降解过程. 岩矿测试, 2014, 33(6): 863-870.

[10]

张小辉, 王晓雁. 气相色谱-质谱联用法测定土壤中16种多环芳烃. 岩矿测试, 2010, 29(5): 535-538.

[11]

刘永刚, 刘菲, 郑海涛. 固相萃取-气相色谱法测定水中多环芳烃. 岩矿测试, 2004, (2): 148-152.

[12]

焦杏春, 王 广, 叶传永, 刘晓端, 杨永亮, 王晓春. 样品前处理过程中多环芳烃的稳定碳同位素分馏. 岩矿测试, 2010, 29(3): 207-211.

[13]

汪瑾彦, 汤 桦, 陈大舟, 吴 雪, 冯 洁, 吴学丽, 李 蕾. 气相色谱-质谱法同时测定河流沉积物中多环芳烃和有机氯农药. 岩矿测试, 2010, 29(3): 225-230.

[14]

罗松光, 谢文明, 葛晓立, 张光弟, 李奇. 北京密云房山地区土壤中多环芳烃的组成与分布特征. 岩矿测试, 2004, (2): 132-136.

[15]

林琳, 郑俊, 杨晓红, 缪丽娜, 许健, 杨笑. 湖州市不同土地利用类型土壤中多环芳烃的分布及来源. 岩矿测试, 2010, 29(6): 687-690.

[16]

孙娜, 迟晓峰, 胡风祖, 杨月琴. 多壁碳纳米管固相萃取快速检测水样中铅镉铜铁. 岩矿测试, 2014, 33(4): 545-550.

[17]

左海英, 张琳, 刘菲. 固相萃取-液相色谱/质谱法测定地下水中三嗪类和. 岩矿测试, 2014, 33(1): 96-101.

[18]

孙书堂, 严倩, 黎宁, 黄理金, 帅琴. 铁丝原位自转化-固相微萃取新涂层应用于萃取环境水样中多环芳烃的性能研究. 岩矿测试, 2020, 39(3): 408-416. doi: 10.15898/j.cnki.11-2131/td.202002030014

[19]

贺行良, 夏宁, 王江涛, 张媛媛. 海洋沉积物中多氯联苯、多环芳烃和有机氯农药的同时净化与分离. 岩矿测试, 2011, 30(3): 251-258.

[20]

张丽珠, 刘永庆. 中国煤中多环芳烃的测定——氧化铝柱预分离高效液相色谱法. 岩矿测试, 1996, (3): 161-167.

计量
  • PDF下载量(5)
  • 文章访问量(435)
  • HTML全文浏览量(166)
  • 被引次数(0)
目录

Figures And Tables

土壤中多环芳烃单体碳同位素分析的分离净化方法研究

谢曼曼, 刘美美, 王淑贤, 凌媛, 孙青