【引用本文】 查向平, 龚冰, 郑永飞, . 低质量数元素同位素在线连续流同位素比值质谱分析的质量控制和数据标准化[J]. 岩矿测试, 2014, 33(4): 453-467.
ZHA Xiang-ping, GONG Bing, ZHENG Yong-fei. Data Normalization and Quality Control of Light Element Stable Isotope Analyses by Means of Continuous Flow Isotope Ratio Mass Spectrometry[J]. Rock and Mineral Analysis, 2014, 33(4): 453-467.

低质量数元素同位素在线连续流同位素比值质谱分析的质量控制和数据标准化

中国科学院壳幔物质与环境重点实验室, 中国科学技术大学地球和空间科学学院, 安徽 合肥 230026

收稿日期: 2014-02-09  修回日期: 2014-05-30  接受日期: 2014-05-30

基金项目: 国家自然科学基金项目(41221062)

作者简介: 查向平,硕士,工程师,主要从事稳定同位素实验技术和方法研究。E-mail:xpzha@ustc.edu.cn。

Data Normalization and Quality Control of Light Element Stable Isotope Analyses by Means of Continuous Flow Isotope Ratio Mass Spectrometry

Key Laboratory of Crust-Mantle Materials and Environments, Chinese Academy of Sciences, School of Earth and Space Science, University of Science and Technology of China, Hefei 230026, China

Received Date: 2014-02-09
Revised Date: 2014-05-30
Accepted Date: 2014-05-30

摘要:同位素比值质谱分析方法是准确测量各种同位素相对丰度的标准方法。连续流同位素质谱的出现不仅提高运行效率,也降低了样品用量并提高灵敏度。但是,要使这种方法获得更好准确度和精度的同位素数据,并做到所获得数据可与其他实验室结果进行类比,从而得到可靠的同位素数据,这就需要好的分析策略和运行方案,还需要对仪器日常性能和数据质量进行严密的监视管控,而且还取决于原始数据如何进一步标准化到国际同位素尺度上。因此,同位素比值质谱结合元素分析仪(或热转换元素分析仪)连续流方法要实现可靠的稳定同位素分析需要:①设备安装和环境控制、测试准备、样品制备和称量、标准物质选择及序列等规范化质量控制措施;②严格校准仪器系统(包括调节灵敏度和线性,背景值监测,稳定性检测,H3+系数校正等);③可靠的数据处理。目前不同的实验室,采用标准物质来标定系统、对测量的同位素数据进行标准化,以及利用控制曲线来监测系统稳定性并对不确定度的计算,这些策略往往都不同。因此,统一的数据处理方案是被高度期待的。目前最好的执行方案是基于线性回归的两点或多点标准化方法。如果每一批样品中测量两个不同的标准物质四次,或者测量四个标准物质两次,那么不确定度会降低50%。当前同位素比值质谱能够测定同位素比值的不确定度一般要好于0.02‰。但是,标准物质的使用既要考虑样品的性质,同时要涵盖它们未知同位素组成的范围,尤其氢同位素在现阶段缺乏标准物质和测量的仪器精度较差(比碳、氮、氧等要低一个数量级)的情况下,这显然是稳定同位素分析者的一个重大挑战。本文概括了同位素比值质谱结合元素分析仪(或热转换元素分析仪)的基本操作原理和分析实践,将数据处理运用到同位素比值分析之中,获得连续流同位素比值质谱分析结果的合理准确度和精度。

关键词: 连续流, 同位素比值质谱, 质量控制, 标准物质, 标准化, 合成不确定度

Data Normalization and Quality Control of Light Element Stable Isotope Analyses by Means of Continuous Flow Isotope Ratio Mass Spectrometry

KEY WORDS: continuous-flow, isotope ratio mass spectrometry, quality control, reference materials, normalization, combined uncertainty

本文参考文献

[1]

Midwood A J, McGaw B A. Recent developments in the analysis of light isotopes by continuous flow isotope ratio mass spectrometry[J].Analalytical Communication, 1999, 36: 291-294. doi: 10.1039/a904908h

[2]

Carter J F, Barwick V J.Good Practice Guide for Isotope Ratio Mass Spectrometry, FIRMS[M].ISBN 978-0-948926-31-0.2011.

[3]

Brenna J T, Corso T N, Tobias H J, , et al. High-precision continuous-flow isotope ratio mass spectrometry[J].Mass Spectrometry Review, 1997, 16: 227-258. doi: 10.1002/(ISSN)1098-2787

[4]

Midwood A J, McGaw B A. Recent developments in the analysis of light isotopes by continuous flow isotope ratio mass spectrometry[J].Analytical Communication, 1999, 36: 291-294. doi: 10.1039/a904908h

[5]

Révész K M, Landwehr J M. δ13C and δ18O isotopic composition of CaCO3 measured by continuous flow isotope ratio mass spectrometry: Statistical evaluation and verification by application to Devils Hole core DH-11 Calcite[J].Rapid communications in Mass Spectrometry, 2002, 16: 2102-2114. doi: 10.1002/rcm.v16:22

[6]

Spötl C, Vennemann T W. Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals[J].Rapid Communications in Mass Spectrometry, 2003, 17: 1004-1006. doi: 10.1002/rcm.v17:9

[7]

Fritzsche F, Tichomirowa M. Signal improvement in elemental analyzer/continuous flow isotope ratio mass spectrometry for samples with low sulfur content using a pre-concentration technique for on-line concentration adjustment[J].Rapid Communications in Mass Spectrometry, 2006, 20: 1682-1697.

[8]

Grassineau N V, Mattey D P, Lowry D, et al. Sulfur isotope analysis of sulfide and sulfate minerals by continuous flow-isotope ratio mass spectrometry[J].Analytical Chemistry, 2001, 73(2): 220-225. doi: 10.1021/ac000550f

[9]

Grassineau N V. High-precision EA-IRMS analysis of S and C isotopes in geological materials[J].Applied Geochemistry, 2006, 21: 756-765. doi: 10.1016/j.apgeochem.2006.02.015

[10]

Fry B, Silva S R, Kendall C, , et al. Oxygen isotope corrections for online δ34S analysis[J].Rapid Communications in Mass Spectrometry, 2002, 16: 854-858. doi: 10.1002/(ISSN)1097-0231

[11]

Yun M, Mayer B, Taylor S W, et al. δ34S measurement on organic materials by continuous flow isotope ratio mass spectrometry[J].Rapid Communications in Mass Spectrometry, 2005, 19: 1429-1436. doi: 10.1002/(ISSN)1097-0231

[12]

Fry B. Coupled N, C and S stable isotope measurements using a dual-column gas chromatography system[J].Rapid Communications in Mass Spectrometry, 2007, 21: 750-756. doi: 10.1002/(ISSN)1097-0231

[13]

Paul D, Skrzypek G, Forizs I, et al. Normalization of meas-ured stable isotope composition to isotope reference scale—A review[J].Rapid Communications in Mass Spectrometry, 2007, 21: 3006-3014. doi: 10.1002/(ISSN)1097-0231

[14]

Skrzypek G, Paul D. δ13C analyses of calcium carbo-nate: Comparison between the Gasbench and elemental analyzer techniques[J].Rapid Communications in Mass Spectrometry, 2006, 20: 2915-2920. doi: 10.1002/(ISSN)1097-0231

[15]

Skrzypek G, Sadler R, Paul D, et al. Error propagation in normalization of stable isotope data: A Monte Carlo analysis[J].Rapid Communications in Mass Spectrometry, 2010, 24(18): 2697-2705. doi: 10.1002/rcm.4684

[16]

Skrzypek G, Sadler R. A strategy for selection of ref-erence materials in stable oxygen isotope analyses of solid materials[J].Rapid Communications in Mass Spectrometry, 2011, 25: 1625-1630. doi: 10.1002/rcm.5032

[17]

Spötl C, Vennemann T W. Continuous-flow isotope ratio mass spectrometric analysis of carbonate minerals[J].Rapid Communications in Mass Spectrometry, 2003, 17: 1004-1006. doi: 10.1002/rcm.v17:9

[18]

Skrzypek G. Normalization procedures and reference mat-erial selection in stable HCNOS isotope analyses: A review[J].Analytical and Bioanalytical Chemistry, 2013, 405: 2815-2823. doi: 10.1007/s00216-012-6517-2

[19]

王政, 刘卫国, 文启彬, 等. 土壤样品中的氮同位素组成的元素分析仪-同位素质谱分析方法[J]. 质谱学报, 2005, 26(2): 71-75.

[20]

曹建平, 黄奕普, 刘广山, , 等. 海洋悬浮颗粒中氮同位素的EA-IRMS法测定[J]. 台湾海峡, 2003, 22(1): 1-8.

[21]

崔杰华, 祁彪, 王颜红, 等. 植物样品中稳定碳同位素的EA-IRMS系统分析方法[J]. 质谱学报, 2008, 29(1): 24-29.

[22]

王旭, 张福松, 丁仲礼, 等. EA-Conflo-IRMS联机系统的燃烧转化率漂移及其对氮碳同位素比值测定的影响[J]. 质谱学报, 2006, 27(2): 104-109.

[23]

储雪蕾. 一种新的、快速的碳、氮、硫同位素测定手段——EA-IRMS连线分析技术[J]. 矿物岩石地球化学通报, 1996, 15(4): 259-262.

[24]

郑永飞, 龚冰, 王峥荣, 等. 岩石中的碳同位素比值的EA-MS测定及其地球化学应用[J]. 地质论评, 1999, 45(5): 529-538.

[25]

张媛媛, 贺行良, 孙书文, , 等. 元素分析仪-同位素比值质谱仪测定海洋沉积物有机碳稳定同位素方法初探[J]. 岩矿测试, 2012, 31(4): 627-631.

[26]

刘运德, 甘义群, 余婷婷, , 等. 微量水氢氧同位素在线同时测试技术——热转换元素分析同位素比质谱法[J]. 岩矿测试, 2010, 29(6): 643-647.

[27]

龚冰, 陈仁旭, 郑永飞, 等. 大别—苏鲁造山带超高压变质岩矿物水含量和氢同位素组成[J]. 科学通报, 2013, 58(22): 2169-2174.

[28]

Werner R A, Brand W A. Referencing strategies and techniques in stable isotope ratio analysis[J].Rapid Communications in Mass Spectrometry, 2001, 15: 501-519. doi: 10.1002/(ISSN)1097-0231

[29]

Preston T, Owens N J P. Interfacing and automatic elemental analyser with an isotope ratio mass spectrometer: The potential for fully automated total nitrogen and nitrogen-15 analysis[J].Analyst, 1983, 108: 971-977. doi: 10.1039/an9830800971

[30]

Glesemann A, Jäger H J, Norman A L, , et al. On-line sulfur isotope determination using an element analyser coupled to a mass spectrometer[J].Analytical Chemistry, 1994, 66: 2816-2819. doi: 10.1021/ac00090a005

[31]

Fourel F, Martineau F, Lécuyer C, , et al. 18O/16O ratio measurement of inorganic and organic materials by elemental analysis-pyrolysis-isotope ratio mass spectrometry continuous flow techniques[J].Rapid Communications in Mass Spectrometry, 2011, 25: 2691-2696. doi: 10.1002/rcm.5056

[32]

Gentile N, Besson L, Pazos D, , et al. On the use of IRMS in forensic science: Proposal for a methodological approach[J].Forensic Science International, 2011, 212: 260-271. doi: 10.1016/j.forsciint.2011.07.003

[33]

Finnigan Gasbench Ⅱ Operating Manual[Z].

[34]

Nelson S T. Sample vial influence on the accuracy and precision of carbon and oxygen isotope ratio analysis in continuous flow mass spectrometric applications[J].Rapid Communications in Mass Spectrometry, 2000, 14: 293-297. doi: 10.1002/(ISSN)1097-0231

[35]

Zha X P, Zhao Y Y, Zheng Y F, et al. An online method combining a Gasbench Ⅱ with continuous flow isotope ratio mass spectrometry to determine the content and isotopic compositions of minor amounts of carbonate in silicate rocks[J].Rapid Communications in Mass Spectrometry, 2010, 24: 2217-2216. doi: 10.1002/rcm.v24:15

[36]

Brand W A.Mass Spectrometry Handware for Analyzing Stable Isotope Ratios[M]//de Groot P A, eds.Handbook of Stable Isotope Analytical Techniques (Vo1.1).Oxford: Elsevier B V,2004:805-819.

[37]

Kornfeld A, Horton T W, Yakir D, , et al. Correcting for nonlinearity effect of continuous flow isotope ratio mass spectrometry across a wide dynamic range[J].Rapid Communications in Mass Spectrometry, 2012, 26: 460-468. doi: 10.1002/rcm.6120

[38]

Muccio Z, Jackson G P. Isotope ratio mass spectrometry[J].Analyst, 2009, 134: 213-222. doi: 10.1039/B808232D

[39]

Gröning M.International Stable Isotope Reference Materials[M]//de Groot P A, eds.Handbook of Stable Isotope Analytical Techniques (Vo1.1).Oxford: Elsevier B V,2004:874-906.

[40]

Bièvre P D, Laeter D, Peiser H S, , et al. Reference materials by isotope ratio mass spectrometry[J].Mass Spectrometry Review, 1993, 12: 143-172. doi: 10.1002/(ISSN)1098-2787

[41]

Coplen T B, Brand W A, Gehre M, , et al. New guidelines for δ13C measurement[J].Analytical Chemistry, 2006, 78: 2439-2441. doi: 10.1021/ac052027c

[42]

Coplen T B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas ratio measurement results[J].Rapid Communications in Mass Spectrometry, 2011, 25: 2538-2560. doi: 10.1002/rcm.5129

[43]

中国合格评定国家认可委员会.化学分析中的不确定度的评估指南[S].2006:6.

相似文献(共19条)

[1]

李曼, 王连和. 区域地球化学样品分析质量管理计算机控制. 岩矿测试, 2008, 27(3): 219-222.

[2]

王桂琴, 张景发. 水分析质量控制的应用. 岩矿测试, 2008, 27(3): 239-240.

[3]

蔡玉曼. 硅钼蓝分光光度法测定钛铁矿中二氧化硅不确定度评定. 岩矿测试, 2008, 27(2): 123-126.

[4]

陈永君. 标准化测量方法在XRF分析中的作用和意义:Ⅱ.在不同制样条件中的应用. 岩矿测试, 1991, (3): 232-235.

[5]

辛青, 刘晓玲. 计算机在化探分析异常样品质量控制中的应用. 岩矿测试, 2003, (1): 55-57.

[6]

鄢明才. 地球化学标准物质标准不确定度估算探讨. 岩矿测试, 2001, (4): 287-293.

[7]

张琳, 刘福亮, 贾艳琨, 刘君. 水中系列氢氧同位素标准物质的研制. 岩矿测试, 2013, 32(5): 7/80-784.

[8]

秦德谛, 贺行良, 张媛媛, 李凤, 陈宇峰, 张培玉. 渤海东海海洋沉积物中碳氮稳定同位素标准物质研制. 岩矿测试, 2017, 36(1): 75-81. doi: 10.15898/j.cnki.11-2131/td.2017.01.011

[9]

李献华, 刘颖. 等离子体质谱测定岩石标准物质中痕量元素—对某些元素定值的探讨. 岩矿测试, 1998, (2): 112-116.

[10]

吴石头, 王亚平, 许春雪. 激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展. 岩矿测试, 2015, 34(5): 503-511. doi: 10.15898/j.cnki.11-2131/td.2015.05.002

[11]

赵悦, 侯可军, 田世洪, 杨丹, 苏嫒娜. 常用锂同位素地质标准物质的多接收器电感耦合等离子体质谱分析研究. 岩矿测试, 2015, 34(1): 28-39. doi: 10.15898/j.cnki.11-2131/td.2015.01.004

[12]

赵晓亮, 李志伟, 王烨, 王君玉, 仲伟路, 陈砚. 铌钽精矿标准物质研制. 岩矿测试, 2018, 37(6): 687-694. doi: 10.15898/j.cnki.11-2131/td.201711230185

[13]

金秉慧. 今日的地质标准物质. 岩矿测试, 1992, (1): 130-141.

[14]

白亚之, 朱爱美, 崔菁菁, 施美娟, 高晶晶, 张俊. 中国近海沉积物氮和有机碳标准物质的研制. 岩矿测试, 2014, 33(1): 74-80.

[15]

Mineral, of, Rock, Resources, Analysis, 100037), and, of, geology, and, Beijing, (Institute, mineral, Ministry. 岩石标准物质的研制. 岩矿测试, 1995, (2): 114-161.

[16]

程志中, 刘妹, 张勤, 顾铁新, 黄宏库. 水系沉积物标准物质研制. 岩矿测试, 2011, 30(6): 714-722.

[17]

田芹, 吴淑琪, 佟玲, 罗代洪. 中国典型类型土壤中有机氯农药和多氯联苯成分分析标准物质的研制. 岩矿测试, 2015, 34(2): 238-244. doi: 10.15898/j.cnki.11-2131/td.2015.02.015

[18]

. 硫化物矿物标准物质的研制. 岩矿测试, 1995, (2): 81-113.

[19]

程志中, 顾铁新, 范永贵, 黄宏库, 刘 妹, 鄢卫东, 鄢明才. 九个铁矿石标准物质研制. 岩矿测试, 2010, 29(3): 305-308.

计量
  • PDF下载量(7)
  • 文章访问量(278)
  • HTML全文浏览量(28)
  • 被引次数(0)
目录

Figures And Tables

低质量数元素同位素在线连续流同位素比值质谱分析的质量控制和数据标准化

查向平, 龚冰, 郑永飞