【引用本文】 尚文郁, 谢曼曼, 王淑贤, 等. 应用近红外光谱法研究泻湖湿地沉积物重金属活动态特征及生态风险评价[J]. 岩矿测试, 2020, 39(4): 597-608. doi: 10.15898/j.cnki.11-2131/td.202001010001
SHANG Wen-yu, XIE Man-man, WANG Shu-xian, et al. Detection of Heavy Metals Mobile Fraction in Lagoonal Wetland Sediment Using Near-Infrared Spectroscopy and Ecological Risk Assessment[J]. Rock and Mineral Analysis, 2020, 39(4): 597-608. doi: 10.15898/j.cnki.11-2131/td.202001010001

应用近红外光谱法研究泻湖湿地沉积物重金属活动态特征及生态风险评价

1. 

中国地质大学(北京)地球科学与资源学院, 北京 100083

2. 

自然资源部生态地球化学重点实验室, 国家地质实验测试中心, 北京 100037

收稿日期: 2020-01-01  修回日期: 2020-06-04  接受日期: 2020-06-15

基金项目: 国家自然科学基金青年科学基金项目“基于红外光谱的金川泥炭中有机碳、腐植酸、木质素等古气候替代指标快速分析方法及在古气候研究中的应用”(41402325)

作者简介: 尚文郁, 硕士, 助理研究员, 从事环境地球化学及气候替代指标研究。E-mail:shangwenyu@cags.ac.cn

通信作者: 岑况, 博士, 教授, 从事矿床地球化学及环境地球化学研究。E-mail:cenkuang@cugb.edu.cn

Detection of Heavy Metals Mobile Fraction in Lagoonal Wetland Sediment Using Near-Infrared Spectroscopy and Ecological Risk Assessment

1. 

School of Earth Sciences and Resources, China University of Geosciences(Beijing), Beijing 100083, China

2. 

Key Laboratory of Eco-Environmental Geochemistry, Ministry of Natural Resources, National Research Center for Geoanalysis, Beijing 100037, China

Corresponding author: CEN Kuang, cenkuang@cugb.edu.cn

Received Date: 2020-01-01
Revised Date: 2020-06-04
Accepted Date: 2020-06-15

摘要:沉积物中的重金属元素经自然作用下可以活动态进行迁移,具有潜在生物可利用性及潜在的区域生态风险。利用近红外光谱(NIRS)技术开展不同基体类型样品响应机理研究,可为评估重金属活动态提供无损、快速的分析方法,为生态风险研究提供依据。天津七里海泻湖湿地沉积物具有低有机质-高黏土含量的特征,本文基于近红外光谱分析技术,建立了沉积物中Co、Ni、Cu、Zn、Cd、Pb重金属活动态组分含量近红外光谱-偏最小二乘回归预测模型。实验结果表明:样品在7290~6390cm-1和4683~4000cm-1波段存在的双羟基O-H伸缩振动、AlAl-OH及Al(Mg)-OH弯曲振动特征吸收,间接指示了重金属元素活动态含量。光谱预测结果显示,近百年来七里海沉积物中Co、Ni、Cu、Zn、Cd、Pb活动态组分的变化特征对应了当地1934-1948年、1956-1963年、1976年至今三次较明显的升温过程,也对应了1980年七里海水库建设等大型人为扰动。本研究样品中Co、Ni、Cu、Zn、Cd、Pb总量及活动态均低于国家标准中规定的生态风险阈值,七里海内村镇及周边农田来自湿地释放的重金属生态风险极低。

关键词: 泻湖沉积物, 黏土沉积物, 重金属活动态, 近红外光谱法, 偏最小二乘回归, 生态风险

要点

(1) 建立沉积物Co、Ni、Cu、Zn、Cd、Pb活动态组分含量的主成分回归-近红外光谱(PLR-NIRS)预测模型。

Detection of Heavy Metals Mobile Fraction in Lagoonal Wetland Sediment Using Near-Infrared Spectroscopy and Ecological Risk Assessment

ABSTRACT

BACKGROUND:

Heavy metal elements in sediment can migrate in an active state under natural action, which has potential bioavailability and potential regional ecological risks. The use of near-infrared spectroscopy (NIRS) technology to study the response mechanism of samples of different matrices can provide a non-destructive and rapid analysis method for evaluating the active state of heavy metals and provide a basis for ecological risk research.

OBJECTIVES:

To reveal the characteristics of active metal elements in lagoonal wetland sediment and evaluate their ecological risk.

METHODS:

Sediment core and soil samples near by the drilling site were analyzed using both spectral and chemical method. NIR spectra of dry-freezed sample were collected by infrared spectrometer with integrating sphere. Based on the near infrared spectroscopy analysis technique, near infrared spectrum were collected by the integrating device within range of 4000-10000cm-1 (1000-2500nm), at the resolution of 2cm-1. Meanwhile the chemical mobile fractions of heavy metal elements were extracted from soil and sediment samples by diluted nitric acid, the dissolved concentrations of Co, Ni, Cu, Zn, Cd, Pb were determined by inductively coupled plasma-mass spectrometry (ICP-MS). With both chemical and spectral predicted value, the partial least squares regression prediction model had been developed and applied to determine mobile fraction of Co, Ni, Cu, Zn, Cd and Pb.

RESULTS:

Area of absorption peaks at 7290-6390cm-1 and 4683-4000cm-1 related to O-H strentching along with AlAl-OH and Al(Mg)-OH bending indirectly indicate the active content of heavy metals. Spectral prediction results show that the changes in the active components of Co, Ni, Cu, Zn, Cd and Pb in the sediments of the Qilihai in the past 100 years corresponded to the three obvious changes from 1934 to 1948, 1956 to 1963, and 1976 to the present. The temperature increase also corresponded to large-scale human disturbances such as the construction of the Qilihai Reservoir in 1980.

CONCLUSIONS:

The total and mobile fractions of Co, Ni, Cu, Zn, Cd and Pb in Qilihai sediments were lower than the ecological risk threshold specified in the national standard. The ecological risk of heavy metals released from wetlands towards nearby villages and farmland in the Qilihai catchment area was extremely low.

KEY WORDS: lagoonal sediment, clay sediment, heavy metals mobile fraction, near-infrared spectroscopy, partial least squares regression, ecological risk

HIGHLIGHTS

(1) PLR-NIRS model was established for predicting mobile Co, Ni, Cu, Zn, Cd and Pb in clay sediments.

本文参考文献

[1]

Zhan H, Jiang Y, Yuan J, et al. Trace metal pollution in soil and wild plants from lead-zinc smelting areas in Huixian County, Northwest China[J].Journal of Geochemical Exploration, 2014, 147: 182-188. doi: 10.1016/j.gexplo.2014.10.007

[2]

Yıldırım G, Tokalıoǧlu Ş. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis[J].Ecotoxicology and Environmental Safety, 2016, 124: 369-376. doi: 10.1016/j.ecoenv.2015.11.006

[3]

Sungur A, Soylak M, Yilmaz E, et al. Characterization of heavy metal fractions in agricultural soils by sequential extraction procedure:The relationship between soil properties and heavy metal fractions[J].Soil and Sediment Contamination:An International Journal, 2015, 24(1): 1-15. doi: 10.1080/15320383.2014.907238

[4]

Nolan A L, Baltpurvins K A, Hamilton I C, et al. Chemostat-controlled selective leaches of model soil phases-The hydrous manganese and iron oxides[J].Geochemistry-Exploration Environment Analysis, 2003, 3(4): 313-320. doi: 10.1144/1467-7873/03-015

[5]

la Colla N S, Domini C E, Marcovecchio J E, et al. Latest approaches on green chemistry preconcentration methods for trace metal determination in seawater-A review[J].Journal of Environmental Management, 2015, 151: 44-55. doi: 10.1016/j.jenvman.2014.11.030

[6]

Concas S, Ardau C, di Bonito M, et al. Field sampling of soil pore water to evaluate the mobile fraction of trace elements in the Iglesiente area (SW Sardinia, Italy)[J].Journal of Geochemical Exploration, 2015, 158: 82-94. doi: 10.1016/j.gexplo.2015.07.006

[7]

王畅, 郭鹏然, 陈杭亭, 等. 土壤和沉积物中重金属生物可利用性的评估[J]. 岩矿测试, 2009, 28(2): 108-112.

Wang C, Guo P R, Chen H T, et al. Evaluation of bioavailability of heavy metals in soils and sediments[J]. Rock and Mineral Analysis, 2009, 28(2): 108-112.

[8]

Zhang W, Ming Q, Shi Z, et al. Lake sediment records on climate change and human activities in the Xingyun Lake catchment, SW China[J].PLoS One, 2014, 9(7): e102167. doi: 10.1371/journal.pone.0102167

[9]

Serrano O, Mateo M, Dueñas-Bohórquez A, et al. The Posidonia oceanica marine sedimentary record:A Holocene archive of heavy metal pollution[J].Science of the Total Environment, 2011, 409(22): 4831-4840. doi: 10.1016/j.scitotenv.2011.08.001

[10]

Moldenhauer K, Zielhofer C, Faust D, et al. Heavy metals as indicators for Holocene sediment provenance in a semi-arid Mediterranean catchment in northern Tunisia[J].Quaternary International, 2008, 189(1): 129-134. doi: 10.1016/j.quaint.2007.09.006

[11]

王亚平, 鲍征宇. 恬矿库周围土壤中重金属存在形态特征研究[J]. 岩矿测试, 2000, 19(1): 7-13.

Wang Y P, Bao Z Y. Study on characteristics of heavy metal species in the soils near the tailings[J]. Rock and Mineral Analysis, 2000, 19(1): 7-13.

[12]

王晓春, 路国慧, 刘晓端, 等. 沈阳细河沿岸土壤中重金属垂直分布特征与形态分析[J]. 岩矿测试, 2010, 29(2): 97-103.

Wang X C, Lu G H, Liu X D, et al. Vertical distribution characteristics and speciation analysis of heavy metals in top-soils around Xihe River of Shenyang[J]. Rock and Mineral Analysis, 2010, 29(2): 97-103.

[13]

卢少勇, 焦伟, 金相灿, 等. 滇池内湖滨带沉积物中重金属形态分析[J]. 中国环境科学, 2010, 30(4): 487-492.

Lu S Y, Jiao W, Jin X C, et al. Speciation of heavy metals in sediments from inner lakeside belt of Lake Dianchi[J]. China Environmental Science, 2010, 30(4): 487-492.

[14]

张婷, 刘爽, 宋玉梅, 等. 柘林湾海水养殖区底泥中重金属生物有效性及生态风险评价[J]. 环境科学学报, 2019, 39(3): 60-69.

Zhang T, Liu S, Song Y M, et al. Bioavailability and ecological risk assessment of heavy metals in sediments of marine aquaculture in Zhelin Bay[J]. Acta Scientiae Circumstantiae, 2019, 39(3): 60-69.

[15]

孙丽娜, 李玉双, 李昕馨, 等. 根际环境锌镉镍的形态变化与植物有效性[J]. 岩矿测试, 2007, 26(4): 257-263.

Sun L N, Li Y S, Li X X, et al. Speciation variation and zinc, cadmium, nickel phyto-availability of in rhizosphere soils[J]. Rock and Mineral Analysis, 2007, 26(4): 257-263.

[16]

Dalal R, Henry R. Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry[J].Soil Science Society of America Journal, 1986, 50(1): 120-123. doi: 10.2136/sssaj1986.03615995005000010023x

[17]

Grzegorz S, Mccarty G W, Stuczynski T I, et al. Near- and mid-infrared diffuse reflectance spectroscopy for measuring soil metal content[J].Journal of Environmental Quality, 2004, 33(6): 2056-2069. doi: 10.2134/jeq2004.2056

[18]

Malley D, Williams P. Use of near-infrared reflectance spectroscopy in prediction of heavy metals in freshwater sediment by their association with organic matter[J]. Environmental Science & Technology, 1997, 31(12): 3461-3467.

[19]

Malley D F. Near-infrared spectroscopy as a potential method for routine sediment analysis to improve rapidity and efficiency[J].Water Science and Technology, 1998, 37(6-7): 181-188. doi: 10.2166/wst.1998.0751

[20]

Moros J, Barciela-Alonso M C, Pazos-Capeáns P, et al. Characterization of estuarine sediments by near infrared diffuse reflectance spectroscopy[J].Analytica Chimica Acta, 2008, 624(1): 113-127. doi: 10.1016/j.aca.2008.06.030

[21]

Ibrahim M, Hameed A J, Jalbout A, et al. Molecular spectroscopic study of River Nile sediment in the greater Cairo region[J].Applied Spectroscopy, 2008, 62(3): 306-311. doi: 10.1366/000370208783759795

[22]

李淑敏, 李红, 孙丹峰, 等. 利用光谱技术分析北京地区农业土壤重金属光谱特征[J]. 土壤通报, 2011, (3): 224-229.

Li S M, Li H, Sun D F, et al. Characteristic and diagnostic bands of heavy metals in Beijing agricultural soils based on spectroscopy[J]. Chinese Journal of Soil Science, 2011, (3): 224-229.

[23]

王哲, 聂亚光, 陈倩倩, 等. 基于近红外光谱快速分析东南极湖泊沉积物化学元素含量[J]. 极地研究, 2016, 28(3): 317-323.

Wang Z, Nie Y G, Chen Q Q, et al. Rapid analysis on contents of chemical elements in pond sediments from East Antarctica using near-infrared spectroscopy[J]. Chinese Journal of Polar Research, 2016, 28(3): 317-323.

[24]

王冬, 马智宏, 王纪华, 等. 土壤金属元素近红外光谱定量校正模型适应性初步研究[J]. 光谱学与光谱分析, 2017, 37(4): 1086-1089.

Wang D, Ma Z H, Wang J H, et al. Preliminary research on the adaptability of NIR quantitative calibration models for metal elements in soil[J]. Spectroscopy and Spectral Analysis, 2017, 37(4): 1086-1089.

[25]

Xia X Q, Chen J, Ma H R, et al. Assessment of cadmium contamination in the sediments of Changjiang (Yangtze) River by reflectance spectroscopy[J]. Chinese Journal of Geochemistry, 2006, 25(Supplement): 226.

[26]

Xia X Q, Mao Y Q, Ji J F, et al. Reflectance spectroscopy study of Cd contamination in the sediments of the Changjiang River, China[J]. Environmental Science & Technology, 2007, 41(10): 3449-3454.

[27]

吕宪国, 王起超, 刘吉平, 等. 湿地生态环境影响评价初步探讨[J]. 生态学杂志, 2004, 23(1): 83-85.

Lü X G, Wang Q C, Liu J P, et al. Primary study on impact assessment of wetland ecological environment[J]. Chinese Journal of Ecology, 2004, 23(1): 83-85.

[28]

Job T, Penny D, Hua Q, et al. Metal enrichment in estuarine sediments proximal to acid sulfate soils as a novel palaeodrought proxy[J].Science of the Total Environment, 2018, 612: 247-256. doi: 10.1016/j.scitotenv.2017.08.157

[29]

Ghosh D, Routh J, Bhadury P, et al. Sub-surface biogeochemical characteristics and its effect on arsenic cycling in the holocene gray sand aquifers of the Lower Bengal Basin[J].Frontiers in Environmental Science, 2017, 5: 82. doi: 10.3389/fenvs.2017.00082

[30]

王苏民,窦鸿身. 中国湖泊志[M] . 北京: 科学出版社, 1998

Wang S M,Dou H S. Records of lakes in China[M] . Beijing: Science Press, 1998
[31]

Kooistra L, Wehrens R, Leuven R, et al. Possibilities of visible-near-infrared spectroscopy for the assessment of soil contamination in river flood plains[J].Analytica Chimica Acta, 2001, 446(1-2): 97-105. doi: 10.1016/S0003-2670(01)01265-X

[32]

Groenenberg J E, Römkens P F, Zomeren A V, et al. Evaluation of the single dilute (0.43M) nitric acid extraction to determine geochemically reactive elements in soil[J]. Environmental Science & Technology, 2017, 51(4): 2246-2253.

[33] Stenberg B,Rossel R A V,Mouazen A M. Visible and near infrared spectroscopy in soil science in advances in agronomy[M] . : Elsevier, 2010: 163-215.
[34]

Awiti A O, Walsh M G, Shepherd K D, et al. Soil condition classification using infrared spectroscopy:A proposition for assessment of soil condition along a tropical forest-cropland chronosequence[J].Geoderma, 2008, 143(1-2): 73-84. doi: 10.1016/j.geoderma.2007.08.021

[35]

Chang C W, Laird D A, Mausbach M J, et al. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties[J].Soil Science Society of America Journal, 2001, 65(2): 480-490. doi: 10.2136/sssaj2001.652480x

[36]

Luce M S, Ziadi N, Gagnon B, et al. Visible near infrared reflectance spectroscopy prediction of soil heavy metal concentrations in paper mill biosolid- and liming by-product-amended agricultural soils[J].Geoderma, 2017, 288: 23-36. doi: 10.1016/j.geoderma.2016.10.037

[37]

Moros J, Cassella R J, Barciela-Alonso M C, et al. Estuarine sediment quality assessment by Fourier-transform infrared spectroscopy[J].Vibrational Spectroscopy, 2010, 53(2): 204-213. doi: 10.1016/j.vibspec.2010.03.001

[38]

Hawkins D M. The problem of overfitting[J]. Journal of Chemical Information and Computer Sciences, 2004, 44(1): 1-12.

[39]

Gowen A, Downey G, Esquerre C, et al. Preventing over-fitting in PLS calibration models of near-infrared (NIR) spectroscopy data using regression coefficients[J].Journal of Chemometrics, 2011, 25(7): 375-381. doi: 10.1002/cem.1349

[40]

Faber N, Rajko R. How to avoid over-fitting in multi-variate calibration-The conventional validation approach and an alternative[J].Analytica Chimica Acta, 2007, 595(1-2): 98-106. doi: 10.1016/j.aca.2007.05.030

[41]

Echeverria J, Morera M, Mazkiaran C, et al. Competitive sorption of heavy metal by soils.Isotherms and fractional factorial experiments[J].Environmental Pollution, 1998, 101(2): 275-284. doi: 10.1016/S0269-7491(98)00038-4

[42]

Uddin M K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade[J].Chemical Engineering Journal, 2017, 308: 438-462. doi: 10.1016/j.cej.2016.09.029

[43]

张金池, 姜姜, 朱丽珺, 等. 黏土矿物中重金属离子的吸附规律及竞争吸附[J]. 生态学报, 2007, 27(9): 273-281.

Zhang J C, Jiang J, Zhu L J, et al. Adsorption and competitive adsorption of heavy metal ion by clay mineral[J]. Acta Ecologica Sinica, 2007, 27(9): 273-281.

[44]

Wu C Y, Jacobson A R, Laba M, et al. Surrogate correlations and near-infrared diffuse reflectance sensing of trace metal content in soils[J]. Water, Air, & Soil Pollution, 2010, 209(1-4): 377-390.

[45]

Li X X, Zhang P X, Bo S, et al. Visible and near-infrared diffuse reflectance spectroscopy for prediction of soil properties near a copper smelter[J].Pedosphere, 2012, 22(3): 351-366. doi: 10.1016/S1002-0160(12)60022-8

[46]

Gholizadeh A, Boruvka L, Vašát R, et al. Estimation of potentially toxic elements contamination in anthropogenic soils on a brown coal mining dumpsite by reflectance spectroscopy:A case study[J].PloS One, 2015, 10(2): e0117457. doi: 10.1371/journal.pone.0117457

[47]

Vávrová P, Stenberg B, Karsisto M, et al.Near infrared reflectance spectroscopy for characterization of plant litter quality: Towards a simpler way of predicting carbon turnover in Peatlands?[M]//Wastewater treatment, plant dynamics and management in constructed and natural wetlands.Springer, 2008: 65-87.

[48]

Clark R N. Spectroscopy of rocks and minerals, and prin-ciples of spectroscopy[J].Manual of Remote Sensing, 1999, 3: 3-58.

[49]

Rossel R V, Behrens T. Using data mining to model and interpret soil diffuse reflectance spectra[J].Geoderma, 2010, 158(1-2): 46-54. doi: 10.1016/j.geoderma.2009.12.025

[50]

Todorova M, Mouazen A M, Lange H, et al. Potential of near-infrared spectroscopy for measurement of heavy metals in soil as affected by calibration set size[J].Water Air and Soil Pollution, 2014, 225(8): 2036-2054. doi: 10.1007/s11270-014-2036-4

[51]

Chattoraj S L, Banerjee S, van der Meer F, et al. Application of visible and infrared spectroscopy for the evaluation of evolved glauconite[J].International Journal of Applied Earth Observation and Geoinformation, 2018, 64: 301-310. doi: 10.1016/j.jag.2017.02.007

[52] Hubbard A T. Encyclopedia of surface and colloid science[M] . : CRC Press, 2002
[53]

王锐, 张风雷, 徐姝姝, 等. 土壤重金属污染风险筛选值划分方法:以Cd为例[J]. 环境科学, 2019, 40(11): 5082-5089.

Wang R, Zhang F L, Xu S S, et al. Method of dividing the value of soil heavy metal pollution risk screening:Using Cd as an example[J]. Environmental Science, 2019, 40(11): 5082-5089.

[54]

冯小平, 王义东, 郭长城, 等. 长期垦殖与退化对七里海芦苇沼泽土壤盐分的影响[J]. 湿地科学, 2014, 12(3): 388-394.

Feng X P, Wang Y D, Guo C C, et al. Effects of long-term reclamation and degradation on soil salinity of phragraites australis marshes in Qilihai wetlands[J]. Wetland Science, 2014, 12(3): 388-394.

[55]

李金辉, 丁薇, 翁贵英, 等. 明湖国家湿地公园10种水生植物的重金属富集特征[J]. 水生态学杂志, 2020, 41(1): 86-91.

Li J H, Ding W, Weng G Y, et al. Heavy metal accumulation by ten aquatic plant species in Minghu national wetland park[J]. Journal of Hydroecology, 2020, 41(1): 86-91.

相似文献(共20条)

[1]

沈小明, 吕爱娟, 沈加林, 胡璟珂, 时磊, 蔡小虎. 长江口启东—崇明岛航道沉积物中多环芳烃分布来源及生态风险评价. 岩矿测试, 2014, 33(3): 379-385.

[2]

王静, 吴宇峰, 王斌, 张磊, 王鑫, 赵一. 应用毒性淋溶提取法评价天津市某工业用地及周围农田土壤中重金属生态风险. 岩矿测试, 2015, 34(4): 464-470. doi: 10.15898/j.cnki.11-2131/td.2015.04.015

[3]

马生明, 朱立新, 汤丽玲, 唐世新. 城镇周边和江河沿岸土壤中Hg和Cd存在形式解析与生态风险评估. 岩矿测试, 2020, 39(2): 225-234. doi: 10.15898/j.cnki.11-2131/td.201906060081

[4]

朱志敏, 陈家彪, 李庭学, 陈良, 马定华. 四川拉拉铜矿尾矿中重金属资源和环境意义. 岩矿测试, 2011, 30(1): 43-48.

[5]

蔡波, 郝立波, 陆继龙, 孙素梅, 白荣杰, 王大勇. 第二松花江中下游河段底泥中多环芳烃的初步研究. 岩矿测试, 2007, 26(4): 325-327.

[6]

郝红, 高博, 王健康, 周怀东, 陆瑾, 殷淑华, 朱成. 滦河流域沉积物中重金属分布特征及风险评价. 岩矿测试, 2012, 31(6): 1000-1005.

[7]

倪永. 偏最小二乘分光光度法用于多组份分析. 岩矿测试, 1989, (4): 258-262.

[8]

王洪艳, 吴敬. 优化偏最小二乘光度法同时测定铑铱钯的研究. 岩矿测试, 1998, (3): 161-166.

[9]

张于平, 瞿文川. 太湖沉积物中重金属的测定及环境意义. 岩矿测试, 2001, (1): 34-36.

[10]

王畅, 郭鹏然, 陈杭亭, 舒永红. 土壤和沉积物中重金属生物可利用性的评估. 岩矿测试, 2009, 28(2): 108-112.

[11]

沈恒培. 深海沉积物及多金属结核中微量元素的光谱测定. 岩矿测试, 1997, (2): 91-97.

[12]

徐国栋, 葛建华, 杜谷, 王以尧, 金斌, 董俊. 成都市中心城区地表沉积物中重金属分布及矿物学特征. 岩矿测试, 2019, 38(4): 418-428. doi: 10.15898/j.cnki.11-2131/td.201811100120

[13]

蔡敬怡, 谭科艳, 路国慧, 殷效彩, 郑宇, 邵鹏威, 王竞, 杨永亮. 贵州万山废弃矿区小流域系统沉积物及悬浮物重金属的空间分布特征. 岩矿测试, 2019, 38(3): 305-315. doi: 10.15898/j.cnki.11-2131/td.201811150123

[14]

赵庆令, 李清彩, 谢江坤, 李元仲, 姬永红, 庞成宝, 万淼. 应用富集系数法和地累积指数法研究济宁南部区域土壤重金属污染特征及生态风险评价. 岩矿测试, 2015, 34(1): 129-137. doi: 10.15898/j.cnki.11-2131/td.2015.01.017

[15]

张丕训, 丁凤珍. 火焰发射光谱法测定水系沉积物中痕量铯. 岩矿测试, 2000, (2): 146-148.

[16]

陈春霏, 洪欣, 王晓飞, 苏荣, 梁晓曦, 何宇, 卢秋, 田艳. X射线荧光光谱法测定土壤和沉积物中的锰. 岩矿测试, 2020, 39(5): 782-789. doi: 10.15898/j.cnki.11-2131/td.201905300077

[17]

姚海蕙, 叶华东. 原子吸收法测定大洋沉积物中多种金属元素. 岩矿测试, 1997, (1): 33-36.

[18]

滕云业, 王毅民. 大洋多金属结核及深海沉积物标准物质研制工作简述. 岩矿测试, 1997, (3): 161-169.

[19]

邱海鸥, 徐国栋, 汤志勇, 王义壮. 原子荧光光谱法用于水系沉积物中迁移毒性态汞的形态分析. 岩矿测试, 2007, 26(5): 359-362.

[20]

黄秀英, 邹骏城. 氢化法-ICP-AES测定水系沉积物和土壤中痕量硒. 岩矿测试, 1987, (3): 167-170.

计量
  • PDF下载量(7)
  • 文章访问量(181)
  • HTML全文浏览量(46)
  • 被引次数(0)
目录

Figures And Tables

应用近红外光谱法研究泻湖湿地沉积物重金属活动态特征及生态风险评价

尚文郁, 谢曼曼, 王淑贤, 孙青, 岑况