废水中全氟和多氟烷基物质处理技术研究进展

A Review of Research Advances on Treatment Technologies for Per- and Polyfluoroalkyl Substances (PFAS) in Wastewater

  • 摘要: 全氟和多氟烷基物质(PFAS)因其极强的化学稳定性、环境持久性及潜在生态风险,已成为全球性环境污染物。尽管PFAS在工业领域应用广泛,但其难降解特性导致在水体、土壤及生物体内持续累积,引发严重的环境和健康问题。本文综述了PFAS废水处理常规处理技术(吸附、膜分离、电化学氧化等)与新型处理技术(水热碱技术、等离子体技术、机械力化学降解等)的研究进展、作用机制及适用性,旨在分析现有技术的降解机理、处理效能及工程化潜力,并提出未来优化建议。吸附技术具有成本效益优势;膜分离技术避免了化学药剂的使用;电化学氧化技术反应条件温和;热解技术可实现完全矿化;水热碱技术则展现出良好的环境友好特性。然而,这些技术仍面临诸多挑战,包括二次污染风险、较高能耗需求(如热解和闪焦耳加热技术)、对短链PFAS的处理效率不足(如泡沫分离技术),以及技术成熟度有限(如超声降解和生物降解技术)。从工程化进程来看,吸附和膜分离技术已达到商业化应用阶段,电化学氧化、芬顿氧化和臭氧氧化技术处于中试至示范工程阶段,其余技术大多仍停留在实验室研究层面。基于当前研究现状和技术瓶颈,建议未来发展应着重于以下关键领域:新型功能材料的研发(如宽pH适应性催化剂和杂化膜材料)、工艺系统的优化整合、工程化应用的改进(包括连续化反应装置的设计和能耗控制),以及环境风险的全面评估。这些研究重点的突破将有效地推动PFAS处理技术向高效、经济和环境可持续的方向发展。

     

    Abstract: Per- and polyfluoroalkyl substances (PFAS) have emerged as global environmental pollutants due to their extreme chemical stability, environmental persistence, and potential ecological risks. Despite their widespread industrial applications, the recalcitrant nature of PFAS leads to continuous accumulation in water bodies, soils, and organisms, posing significant environmental and health concerns. This review summarizes recent advances in conventional (e.g., adsorption, membrane separation, electrochemical oxidation) and emerging (e.g., hydrothermal alkaline treatment, plasma technology, mechanochemical degradation) PFAS wastewater treatment technologies, focusing on their mechanisms, applicability, and research progress. The review aims to analyze the degradation principles, treatment efficiency, and scalability of existing technologies while providing future optimization recommendations. Adsorption offers cost-effectiveness advantages; membrane separation avoids chemical usage; electrochemical oxidation operates under mild conditions; pyrolysis achieves complete mineralization; hydrothermal alkaline treatment demonstrates notable environmental friendliness. However, these technologies still face multiple challenges, including secondary pollution risks, high energy demands (e.g., pyrolysis and flash Joule heating), limited efficiency for short-chain PFAS (e.g., foam fractionation), and low technological maturity (e.g., ultrasonic and biodegradation). From an engineering perspective, adsorption and membrane separation have reached commercialization, while electrochemical oxidation, Fenton oxidation, and ozonation are at pilot-to-demonstration stages. Most other technologies remain confined to laboratory research. Based on current limitations, future development should prioritize: (1) novel functional materials (e.g., pH-adaptive catalysts and hybrid membranes), (2) process optimization and integration, (3) engineering improvements (e.g., continuous reactor design and energy consumption control), and (4) comprehensive environmental risk assessment. Breakthroughs in these areas will advance PFAS treatment toward higher efficiency, cost-effectiveness, and environmental sustainability.

     

/

返回文章
返回