不同变质程度煤分子结构表征的拉曼光谱分峰拟合方法研究

Research on Peak-Deconvolution Method for Raman Spectroscopy for Molecular Structure Characterization of Coal with Different Degrees of Metamorphism

  • 摘要: 针对煤分子结构解析的需求,拉曼光谱是一种快速无损的碳材料表征技术,因其对碳结构有序度的高敏感性被广泛应用于表征煤分子结构。通过拉曼光谱分峰拟合优化,揭示煤分子结构演化规律,支撑低碳利用与标准体系构建。然而由于对煤结构的理解存在差异,不同研究中采用的拟合峰数和函数差异显著,影响了拉曼光谱数据在煤分子结构表征中的可比性和可靠性。本文旨在探究不同拟合方式对煤的拉曼光谱相关特征峰的拟合效果。基于拟合优度(R2)及前人对煤结构特征的认知,确定了最优拟合峰数和函数,并系统比较了高斯(Gaussian)、洛伦兹(Lorentzian)、高斯-洛伦兹混合(Gaussian-Lorentzian)、福格特(Voigtian)和皮尔逊Ⅶ (Pearson Ⅶ)函数的拟合性能,对样品拉曼光谱的一级模(1000~1800cm−1)进行拟合。结果表明:Gaussian-Lorentzian和Voigtian函数均能获得对称峰与非对称峰的较高拟合优度(R2>0.9964),在拟合对称峰时,Gaussian函数高于Lorentzian函数;而在拟合非对称峰时,Lorentzian函数表现更优。此外,不同变质程度样品的最优拟合方法存在显著差异,煤系石墨的拉曼光谱一级模拟合三个峰(D1、G、D2),高煤阶煤拟合四个峰(D4、D1、D3、G),两者采用Gaussian-Lorentzian或Voigtian函数可获得最优拟合(R2>0.9979);高灰煤拟合四个峰(D4、D1、D3、G),采用Pearson Ⅶ函数拟合效果最佳(R2>0.9983);热解煤拟合十个峰(低于900℃),采用Voigtian和Gaussian-Lorentzian函数的拟合效果最优(R2>0.9967)。本研究评估了拟合函数类型与拟合峰数对煤拉曼光谱特征峰的拟合优度。拟合函数的选择依赖于峰型对称性,煤结构的复杂度决定最优拟合策略,为煤拉曼光谱的定量分峰拟合提供解决方案。

     

    Abstract: Raman spectroscopy is a rapid and non-destructive tool for carbon materials; its high sensitivity to structural order makes it ideal for coal characterization. To address the complexity of coal structure, optimized peak deconvolution is employed to reveal structural evolution and to support low-carbon utilization and standard development. Divergent interpretations of coal structure have led to variable peak numbers and functions in previous work, compromising data comparability and reliability. Here, the optimal peak number and function were identified by the coefficient of determination (R2) and literature consensus. Gaussian, Lorentzian, Gaussian-Lorentzian, Voigtian and Pearson Ⅶ functions were systematically compared for the first-order region (1000–1800cm−1). Gaussian–Lorentzian and Voigtian functions yield R2 0.9964 for both symmetric and asymmetric peaks; Gaussian outperforms Lorentzian for symmetric peaks, whereas the reverse holds for asymmetric peaks. Optimal strategies vary with metamorphic grade sample: coal-measure graphite require three peaks (D1, G, D2), high-rank coals four peaks (D4, D1, D3, G), both best fitted by Gaussian–Lorentzian or Voigtian functions (R2>0.9979); high-ash coals (low-rank coal) need four peaks and are best described by Pearson Ⅶ (R2>0.9983); pyrolysed coals (≤900°C) require ten peaks and are optimally fitted by Voigtian or Gaussian–Lorentzian (R2>0.9967). This study demonstrates that function choice depends on peak symmetry, while coal complexity dictates the optimal deconvolution strategy, providing a quantitative protocol for Raman peak fitting of coal.

     

/

返回文章
返回