硫氧化菌在碱性尾矿中的适应机制与生态修复作用研究进展

Advances in Understanding the Adaptation Mechanisms and Ecological Functions of Sulfur-Oxidizing Bacteria in Alkaline Tailings

  • 摘要: 碱性尾矿是选矿浮选过程中产生的一类具有偏碱性(pH>8)的矿渣废弃物,广泛存在于铁、铝、钼等矿产资源的开发利用过程中。这类尾矿往往具有强碱性、高盐分、低有机质、低养分、结构松散等极端理化性质,易造成环境污染和土壤退化,严重威胁生态环境和人体健康。传统覆土植被重建和化学稳定化技术在该类尾矿上的应用效果有限,亟需探索高效且低碳绿色的新型修复技术。硫氧化菌(SOB)作为一种重要的地质微生物,已经被证实在多种极端环境中发挥重要的生态功能。本文系统总结了SOB在碱性尾矿及类似环境中的分布特征和适应极端环境的生理生态机制,包括多种代谢路径的选择、氧/硝酸盐等电子受体的灵活利用、高盐/重金属胁迫下的应激调控、生物膜构建及功能基因表达调控等机制。同时,深入阐述了SOB在改善碱性尾矿理化性质、促进土壤结构形成、增强土壤有机质固持以及钝化重金属中的作用及机理,并分析了尾矿环境温度、pH、尾矿盐分及离子强度、氧化还原电势等因素对SOB在尾矿修复中作用的影响。在此基础上,提出SOB在碱性尾矿中“代谢-结构-生态功能”耦合机制及其在尾矿土壤发育和生态重建中的重要应用价值。最后指出SOB在适应极端生境生理生态机制、促进碱性尾矿生态重建和修复方法整合优化等方面的研究空白,展望其在碱性尾矿生态修复中的应用前景。

     

    Abstract: Alkaline mine tailings (pH>8), predominantly derived from the flotation of iron, aluminum, and molybdenum ores, are characterized by high salinity, nutrient deficiency, low organic matter, and poor structural integrity. These extreme physicochemical conditions impede natural recovery processes and pose long-term environmental and health risks. Conventional remediation measures, such as topsoil coverage and chemical stabilization, have demonstrated limited efficacy in such contexts, necessitating alternative strategies with enhanced ecological compatibility. Sulfur-oxidizing bacteria (SOB), recognized for their metabolic plasticity and environmental resilience, have shown significant potential in the bioremediation of extreme substrates. This review synthesizes recent advances in understanding SOB distribution and adaptation mechanisms in alkaline tailings, including diversified sulfur metabolism, utilization of alternative electron acceptors, stress response to salinity and metal(loid)s, biofilm development, and regulation of functional gene expression. Furthermore, the roles of SOB in improving alkaline tailing physicochemical properties, promoting soil structure formation, enhancing organic matter stabilization, and facilitating metal(loid) immobilization are systematically evaluated. Key environmental factors influencing SOB activity are also discussed. A conceptual framework integrating physicochemical function, nitrogen and carbon fixation, and ecosystem build-up is proposed to support SOB-based mine tailing rehabilitation technologies. Research gaps and future directions for SOB application in ecological rehabilitation of alkaline tailings are proposed.

     

/

返回文章
返回