基于细观结构与集成学习的岩石可钻性智能预测方法

Intelligent Prediction of Rock Drillability Using Mesoscopic Structure and Ensemble Learning Methods

  • 摘要: 岩石可钻性作为衡量岩石破碎难易程度的重要指标,对指导钻探活动及开采深部底层具有重要意义。微钻法等常见的物理测定法,存在数据获取成本高、效率低及专业依赖度高等问题,现有研究中的数值预测法参数有限、精度较低。岩石细观结构在揭示岩石物理化学特性时发挥着重要作用,其与岩石力学参数如岩石可钻性有密切关系。为解决现有方法测定岩石可钻性的局限性,本文基于岩石学提出涵盖21个细观结构参数的岩石薄片颗粒特征集,并通过图像学与深度学习方法构建细观结构参数计算模型,通过Pearson、PCA分析方法实现特征优选,利用集成学习Stacking策略建立岩石可钻性预测模型。结果表明:①研究样本的岩石颗粒细观结构表征与可钻性呈现出较明显相关性,其中颗粒最短轴方差与面积标准差与岩石可钻性相关性最高,分别达0.42、0.37;②集成学习优化的融合模型预测能力最佳, E_\mathrmM\mathrmA\mathrmP\mathrmE 、APE误差仅为14.1%、12.6%,较最优基准单模型分别降低4.7%、2.5%;③所提出方法能够提高测定可钻性效率,在1min之内即可完成整个薄片细观结构计算及岩石可钻性预测;④本文模型可通过进一步扩充样本多样性,以提升在不同岩石细观特征下的可钻性识别性能。本文提供的岩石可钻性智能化评价方法,有效地揭示了细观结构与可钻性之间的关系,可为实时钻井工具选择和钻井参数优化提供高效支撑。

     

    Abstract: Rock drillability, a critical indicator for evaluating rock fragmentation efficiency, plays a pivotal role in drilling and deep mining operations. Traditional physical measurement methods (e.g., micro-drilling) suffer from high costs and low efficiency, while existing numerical prediction approaches exhibit limited parameters and insufficient accuracy. The microstructural characteristics of rock play a fundamental role in determining its physicochemical properties and are strongly correlated with drillability. This study proposes a petrology-based feature set encompassing 21 particle texture parameters extracted from thin sections, combined with image analysis to establish a quantitative calculation model. Feature selection and dimensionality reduction were conducted using Pearson correlation analysis and PCA, followed by the development of a Stacking ensemble learning model for drillability prediction. The key findings are as follows: (1) Significant correlations exist between particle textures and drillability, with the highest correlation coefficients observed for shortest-axis variance (0.42) and area standard deviation (0.37); (2) The Stacking model demonstrated superior predictive performance, with E_\mathrmM\mathrmA\mathrmP\mathrmE and APE errors of only 14.1% and 12.6%, respectively, reducing errors by 4.7% and 2.5% compared to the best single-model benchmark; (3) The proposed framework enables automated thin-section analysis and drillability prediction within one minute. This approach provides a novel paradigm for efficient drillability assessment.

     

/

返回文章
返回