【引用本文】 胡婷婷, 陈家玮, . 土壤中微塑料的吸附迁移及老化作用对污染物环境行为的影响研究进展[J]. 岩矿测试, 2022, 41(3): 353-363. doi: 10.15898/j.cnki.11-2131/td.202202180024
HU Tingting, CHEN Jiawei. A Review on Adsorption and Transport of Microplastics in Soil and the Effect of Ageing on Environmental Behavior of Pollutants[J]. Rock and Mineral Analysis, 2022, 41(3): 353-363. doi: 10.15898/j.cnki.11-2131/td.202202180024

土壤中微塑料的吸附迁移及老化作用对污染物环境行为的影响研究进展

中国地质大学(北京)地球科学与资源学院,北京 100083

收稿日期: 2022-02-18  修回日期: 2022-03-28  接受日期: 2022-04-30

基金项目: 国家自然科学基金项目(41731282)

作者简介: 胡婷婷,硕士研究生,从事环境地球化学研究。E-mail:2001210098@email.cugb.edu.cn

通信作者: 陈家玮,教授,博士生导师,从事环境地球化学研究。E-mail:chenjiawei@cugb.edu.cn

A Review on Adsorption and Transport of Microplastics in Soil and the Effect of Ageing on Environmental Behavior of Pollutants

School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China

Corresponding author: CHEN Jiawei, chenjiawei@cugb.edu.cn

Received Date: 2022-02-18
Revised Date: 2022-03-28
Accepted Date: 2022-04-30

摘要:微塑料(粒径小于5mm的塑料颗粒),由于其自身较强的迁移特性及对环境污染物较强的亲和力,会引发严重生态风险,受到广泛关注。微塑料可以通过地膜破损、垃圾填埋和大气沉降等方式汇集在土壤中。土壤中的微塑料不仅会向下迁移,吸附富集共存的污染物,还会在表生地球化学作用下发生老化,对环境安全造成更大的威胁。本文基于近年文献重点综述了土壤环境中微塑料的吸附迁移行为以及老化作用对污染物环境行为的影响。结果表明:①微塑料在土壤中的迁移行为受到其自身理化性质(大小、形状及官能团)及土壤环境条件的影响;②微塑料可以吸附携带外部环境污染物迁移,从而改变污染物在环境中的归宿与生物可利用性;③老化作用会改变微塑料理化性质,影响微塑料的吸附与迁移能力,加速内源污染物的释放,其中有机污染物邻苯二甲酸酯释放的浓度范围约为50.3~6660ng/g,常见重金属Pb2+的释放浓度范围约为5.1~81.4μg/g。本文建议今后应加强三方面研究工作:①不同土壤环境中多因素耦合条件下,开展微塑料与环境污染物的相互作用机制研究,特别是不同土壤介质及环境因素对污染物在微塑料上的吸附/解吸/迁移行为的影响。②通过实验模拟手段,研究环境中不同老化作用对微塑料性质和环境行为的影响。③加强微塑料内源污染物在不同环境中的释放研究,揭示老化作用对内源污染物释放行为的影响。

关键词: 微塑料, 土壤, 迁移, 吸附, 污染物, 老化

要点

(1) 微塑料的迁移行为受到自身理化性质以及土壤环境条件的影响。

(2) 微塑料可以吸附携带环境中重金属和有机污染物在土壤中共迁移。

(3) 老化作用对微塑料迁移行为、吸附能力以及内源污染物释放产生重要影响。

A Review on Adsorption and Transport of Microplastics in Soil and the Effect of Ageing on Environmental Behavior of Pollutants

ABSTRACT

BACKGROUND:

Microplastics, defined as the plastic material with a size of < 5mm, have been widely attracting attention due to the high mobility and strong affinity toward pollutants. Microplastics concentrate in soil through plastic film breakage, landfill and atmospheric deposition. Microplastics can migrate downward in soil, and adsorb co-existing pollutants. The ageing of microplastics due to surface geochemical processes, would result in a great threat to the environment.

OBJECTIVES:

To comprehensively understand the environmental behavior of microplastics and their potential environmental risks.

METHODS:

The key factors controlling vertical transport of microplastics in soil were summarized, including microplastics properties such as the size, shape and functional groups, and soil properties such as the porosity, organic matter and soil minerals. The adsorption of organic pollutants and heavy metals on microplastics and the effect of ageing were analyzed.

RESULTS:

The results obtained from recent studies showed that: (1) The transportation of microplastics can be affected by their inherent properties and the soil environments. (2) Microplastics can adsorb heavy metals and organic pollutants, and co-transport in soil, which would change the environmental fate and bioavailability of pollutants. (3) The ageing process can impact the microplastics mobility, adsorption capacity, and the release of the associated contaminants derived from the microplastics. The release of endogenous organics phthalate esters from aged microplastics could reach 50.3-6660ng/g, and that of heavy metal Pb2+ reach 5.1-81.4μg/g.

CONCLUSIONS:

In view of the current research and existing problems, this review gives guidance on microplastics transport, adsorption and ageing effect for future studies. (1) The interaction mechanisms between microplastics and pollutants should be elucidated under multi-factor coupling conditions in soil, especially for the influence of different soil types and environmental factors on the adsorption/desorption/migration of pollutants on the microplastics. (2) The effects of different ageing processes on the properties and environmental behavior of the microplastics should be studied by experimental simulation. (3) In order to uncover the effects of aging on the release behavior of endogenous pollutants, the study on the release of endogenous pollutants from microplastics in different ageing environment should be strengthened.

KEY WORDS: microplastics, soil, transport, adsorption, pollutants, ageing

HIGHLIGHTS

(1) The transportation of microplastics can be affected by their inherent properties and the soil environments.

(2) Microplastics can adsorb heavy metals and organic pollutants and co-transport in soil.

(3) The ageing process can impact the microplastics mobility, adsorption capacity, and release of the associated contaminants derived from the microplastics.

本文参考文献

[1]

Geyer R. Production, use, and fate of synthetic polymers[M]//Plastic waste and recycling. Academic Press, 2020: 13-32.

[2]

Sutherland W J, Clout M, Isabelle M, et al. A horizon scan of global conservation issues for 2010[J].Trends Ecology & Evolution, 2010, 25(1): 1-7.

[3]

Abuwatfa W H, AI-Muqbel D, AI-Othman A, et al. Insights into the removal of microplastics from water using biochar in the era of COVID-19:A mini review[J].Case Studies in Chemical and Environmental Engineering, 2021, 4: 100151. doi: 10.1016/j.cscee.2021.100151

[4]

Padervand M, Lichtfouse E, Robert D, et al. Removal of microplastics from the environment: A review[J].Environmental Chemistry Letters, 2020, 18(3): 807-828. doi: 10.1007/s10311-020-00983-1

[5]

Akdoan Z, Guven B. Microplastics in the environment: A critical review of current understanding and identification of future research needs[J].Environmental Pollution, 2019, 254(Part A): 113011.

[6]

Horton A A, Walton A, Spurgeon D J, et al. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities[J].Science of the Total Environment, 2017, 586: 127-141. doi: 10.1016/j.scitotenv.2017.01.190

[7]

Lahive E, Walton A, Horton A A, et al. Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure[J].Environmental Pollution, 2019, 255: 113174. doi: 10.1016/j.envpol.2019.113174

[8]

Jiang X F, Chen H, Liao Y C, et al. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba[J].Environmental Pollution, 2019, 250: 831. doi: 10.1016/j.envpol.2019.04.055

[9]

Klein M, Fischer E K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany[J].Science of the Total Environment, 2019, 685: 96-103. doi: 10.1016/j.scitotenv.2019.05.405

[10]

Siegfried M, Koelmans A A, Besseling E, et al. Export of microplastics from land to sea: A modelling approach[J].Water Research, 2017, 127: 249-257. doi: 10.1016/j.watres.2017.10.011

[11]

Rochman C M. Microplastics research-from sink to source[J].Science, 2018, 360(6384): 28-29. doi: 10.1126/science.aar7734

[12]

郝爱红, 赵保卫, 张建, 等. 土壤中微塑料污染现状及其生态风险研究进展[J]. 环境化学, 2021, 40(4): 1100-1111.

Hao A H, Zhao B W, Zhang J, et al. Research progress on pollution status and ecological risk of microplastics in soil[J]. Environmental Chemistry, 2021, 40(4): 1100-1111.

[13]

杨杰, 李连祯, 周倩, 等. 土壤环境中微塑料污染: 来源、过程及风险[J]. 土壤学报, 2021, 58(2): 281-298.

Yang J, Li L Z, Zhou Q, et al. Microplastics contamination of soil environment: Sources, processes and risks[J]. Acta Pedologica Sinica, 2021, 58(2): 281-298.

[14]

Fuller S, Gautam A. A procedure for measuring microplastics using pressurized fluid extraction[J].Environmental Science & Technology, 2016, 50(11): 5774-5780.

[15]

Wang J, Li J Y, Liu S T, et al. Distinct microplastic distributions in soils of different land-use types: A case study of Chinese farmlands[J].Environmental Pollution, 2021, 269: 116199. doi: 10.1016/j.envpol.2020.116199

[16]

Ee-Ling N, Esperanza H L, Simon M E, et al. An overview of microplastic and nanoplastic pollution in agroecosystems[J].Science of the Total Environment, 2018, 627: 1377-1388. doi: 10.1016/j.scitotenv.2018.01.341

[17]

Rillig M C, Ingraffia R, de Souza Machado A A, et al. Micro-plastic incorporation into soil in agroecosystems[J].Frontiers in Plant Science, 2017, 8: 1805. doi: 10.3389/fpls.2017.01805

[18]

董姝楠, 夏继红, 王为木, 等. 土壤-地下水中微塑料迁移的影响因素及机制研究进展[J]. 农业工程学报, 2020, 36(14): 1-8. doi: 10.11975/j.issn.1002-6819.2020.14.001

Dong S N, Xia J H, Wang W M, et al. Review on impact factors and mechanisms of microplastic transport in soil and groundwater[J].Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(14): 1-8. doi: 10.11975/j.issn.1002-6819.2020.14.001

[19]

徐笠, 李海霞, 韩丽花, 等. 微塑料对典型污染物吸附解吸的研究进展[J]. 中国生态农业学报, 2021, 29(6): 961-969.

Xu L, Li H X, Han L H, et al. Research progress on the adsorption and desorption of typical pollutants on microplastics[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 961-969.

[20]

Lwanga E H, Vega J M, Quej V K, et al. Field evidence for transfer of plastic debris along a terrestrial food chain[J].Scientific Reports, 2017, 7(1): 1-7. doi: 10.1038/s41598-016-0028-x

[21]

McDougall L, Thomson L, Brand S, et al. Adsorption of a diverse range of pharmaceuticals to polyethylene microplastics in wastewater and their desorption in environmental matrices[J].Science of the Total Environment, 2022, 808: 152071. doi: 10.1016/j.scitotenv.2021.152071

[22]

Wang T, Ma Y N, Ji R, et al. Aging processes of polyethylene mulch films and preparation of microplastics with environmental characteristics[J].Bulletin of Environmental Contamination and Toxicology, 2021, 107: 736-740. doi: 10.1007/s00128-020-02975-x

[23]

Xu S Y, Zhang H, He P J, et al. Leaching behaviour of bisphenol A from municipal solid waste under landfill environment[J].Environmental Technology, 2011, 32(11): 1269-1277. doi: 10.1080/09593330.2010.535175

[24]

Roy P K, Hakkarainen M, Varma I K, et al. Degradable polyethylene: Fantasy or reality[J].Environmental Science & Technology, 2011, 45(10): 4217-4227.

[25]

Luo H W, Zhao Y Y, Li Y, et al. Aging of microplastics affects their surface properties, thermal decomposition, additives leaching and interactions in simulated fluids[J].Science of the Total Environment, 2020, 714: 136862. doi: 10.1016/j.scitotenv.2020.136862

[26]

Dong Z Q, Qiu Y P, Zhang W, et al. Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater[J].Water Research, 2018, 143(1): 518-526.

[27]

Zhang G S, Zhang F X, Li X T, et al. Effects of polyester micro-fibers on soil physical properties: Perception from a field and a pot experiment[J].Science of the Total Environment, 2019, 670: 1-7. doi: 10.1016/j.scitotenv.2019.03.149

[28]

Dong Z Q, Zhu L, Zhang W, et al. Role of surface functionalities of nanoplastics on their transport in seawater-saturated sea sand[J].Environmental Pollution, 2019, 255(1): 113177.

[29]

Liu J, Zhang T, Tian L L, et al. Aging significantly affects mobility and contaminant-mobilizing ability of nanoplastics in saturated loamy sand[J].Environmental Science & Technology, 2019, 53(10): 5805-5815.

[30]

Zhang M, Xu L H. Transport of micro-and nanoplastics in the environment: Trojan-Horse effect for organic contaminants[J].Environmental Science and Technology, 2020, 52(5): 1-37.

[31]

Blasing M, Amelung W. Plastics in soil: Analytical methods and possible sources[J].Science of the Total Environment, 2018, 612(1): 422-435.

[32]

Ren Z F, Gui X Y, Xu X Y, et al. Microplastics in the soil-groundwater environment: Aging, migration, and co-transport of contaminant—A critical review[J].Journal of Hazardous Materials, 2021, 419: 126455. doi: 10.1016/j.jhazmat.2021.126455

[33]

Yan X Y, Yang X Y, Tang Z, et al. Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes[J].Environmental Pollution, 2020, 262: 114270. doi: 10.1016/j.envpol.2020.114270

[34]

Wu X L, Lyu X Y, Li Z Y, et al. Transport of polystyrene nanoplastics in natural soils: Effect of soil properties, ionic strength and cation type[J].Science of the Total Environment, 2020, 707: 136065. doi: 10.1016/j.scitotenv.2019.136065

[35]

Hou J, Xu X Y, Lan L, et al. Transport behavior of micro polyethylene particles in saturated quartz sand: Impacts of input concentration and physicochemical factors[J].Environmental Pollution, 2020, 263: 114499. doi: 10.1016/j.envpol.2020.114499

[36]

Lwanga E H, Gertsen H, Gooren H, et al. Incorporation of microplastics from litter into burrows of Lumbricus terrestris[J].Environmental Pollution, 2017, 220: 523-531. doi: 10.1016/j.envpol.2016.09.096

[37]

Rillig M C, Ziersch L, Hempel S, et al. Microplastic transport in soil by earthworms[J].Scientific Reports, 2017, 7(1): 1-7. doi: 10.1038/s41598-016-0028-x

[38]

Maaβ S, Daphi D, Lehmann A, et al. Transport of microplastics by two collembolan species[J].Environmental Pollution, 2017, 225: 456-459. doi: 10.1016/j.envpol.2017.03.009

[39]

Zhu D, Bi Q F, Xiang Q, et al. Trophic predator-prey relationships promote transport of microplastics compared with the single Hypoaspis aculeifer and Folsomia candida[J].Environmental Pollution, 2018, 235: 150-154. doi: 10.1016/j.envpol.2017.12.058

[40]

Chae Y, An Y J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review[J].Environmental Pollution, 2018, 240: 387-395. doi: 10.1016/j.envpol.2018.05.008

[41]

贺灵, 吴超, 曾道明, 等. 中国西南典型地质背景区土壤重金属分布及生态风险特征[J]. 岩矿测试, 2021, 40(3): 384-396.

He L, Wu C, Zeng D M, et al. Distribution of heavy metals and ecological risk of soils in the typical geological background region of southwest China[J]. Rock and Mineral Analysis, 2021, 40(3): 384-396.

[42]

Wang Y, Wang X J, Li Y, et al. Biofilm alters tetracycline and copper adsorption behaviors onto polyethylene microplastics[J].Chemical Engineering Journal, 2020, 392: 123808. doi: 10.1016/j.cej.2019.123808

[43]

Dong Y M, Gao M L, Song Z G, et al. Adsorption mechanism of As(Ⅲ) on polytetrafluoroethylene particles of different size[J].Environmental Pollution, 2019, 254(Part A): 112950.

[44]

Zhou Y F, Yang Y Y, Liu G H, et al. Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: The roles of water pH, lead ions, natural organic matter and phenanthrene[J].Water Research, 2020, 184: 116209. doi: 10.1016/j.watres.2020.116209

[45]

Hodson M E, Duffus-Hodson C A, Clark A, et al. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates[J].Environmental Science & Technology, 2017, 51(8): 4714-4721.

[46]

Zhang S W, Han B, Sun Y H, et al. Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil[J].Journal of Hazardous Materials, 2019, 388: 121775.

[47]

Ma X Y, Zhou X H, Zhao M J, et al. Polypropylene microplastics alter the cadmium adsorption capacity on different soil solid fractions[J].Frontiers of Environmental Science & Engineering, 2022, 16(1): 1-12.

[48]

Yu H Y, Liu C, Zhu J, et al. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value[J].Environmental Pollution, 2016, 209(15): 38-45.

[49]

刘冬, 贺灵, 文雪琴, 等. 金衢盆地典型地区土壤-稻米重金属含量及土壤酸碱度的影响研究[J]. 岩矿测试, 2021, 40(6): 883-893.

Liu D, He L, Wen X Q, et al. Concentration of heavy metals in soil and rice and its influence by soil pH in Jinqu Basin[J]. Rock and Mineral Analysis, 2021, 40(6): 883-893.

[50]

Liu H F, Yang X M, Liu G B, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J].Chemosphere, 2017, 185: 907-917. doi: 10.1016/j.chemosphere.2017.07.064

[51]

曹宁, 孙彬彬, 曾道明, 等. 珠江三角洲西部典型乡镇稻米与根系土重金属元素含量关系研究[J]. 岩矿测试, 2020, 39(5): 739-752.

Cao N, Sun B B, Zeng D M, et al. Study on the relationship between the contents of heavy metals in rice and roots soils in typical townships in the western Pearl River Delta[J]. Rock and Mineral Analysis, 2020, 39(5): 739-752.

[52]

陈雅兰, 孙可, 高博, 等. 微塑料吸附机制研究进展[J]. 环境化学, 2021, 40(8): 2271-2287.

Chen Y L, Sun K, Gao B, et al. Sorption behavior, mechanisms, and models of organic pollutants and metals on microplastics: A review[J]. Environmental Chemistry, 2021, 40(8): 2271-2287.

[53]

Fu L N, Li J, Wang G Y, et al. Adsorption behavior of organic pollutants on microplastics[J].Ecotoxicology and Environmental Safety, 2021, 217: 112207. doi: 10.1016/j.ecoenv.2021.112207

[54]

Šunta U, Prosenc F, Trebše P, et al. Adsorption of ace-tamiprid, chlorantraniliprole and flubendiamide on different type of microplastics present in alluvial soil[J].Chemosphere, 2020, 261: 127762. doi: 10.1016/j.chemosphere.2020.127762

[55]

Chen X, Gu X N, Bao L J, et al. Comparison of adsorption and desorption of triclosan between microplastics and soil particles[J].Chemosphere, 2021, 263: 127947. doi: 10.1016/j.chemosphere.2020.127947

[56]

Hu B Y, Li Y X, Jiang L S, et al. Influence of micro-plastics occurrence on the adsorption of 17β-estradiol in soil[J].Journal of Hazardous Materials, 2020, 400: 123325. doi: 10.1016/j.jhazmat.2020.123325

[57]

Wu P F, Cai Z W, Jin H B, et al. Adsorption mechanisms of five bisphenol analogues on PVC microplastics[J].Science of the Total Environment, 2018, 650: 671-678.

[58]

Zhu Y F, Li X X, Wang L P, et al. Adsorption of BDE-209 to polyethylene microplastics: Effect of microplastics property and metal ions[J].Water, Air & Soil Pollution, 2021, 232(12): 1-10.

[59]

Andrady A L. The plastic in microplastics: A review[J].Marine Pollution Bulletin, 2017, 119(1): 12-22. doi: 10.1016/j.marpolbul.2017.01.082

[60]

Jahnke A, Arp H P H, Escher B I, et al. Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment[J].Environmental Science & Technology Letters, 2017, 4(3): 85-90.

[61]

Duan J J, Bolan N, Li Y, et al. Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments[J].Water Research, 2021, 196: 117011. doi: 10.1016/j.watres.2021.117011

[62]

Ren Z F, Gui X Y, Wei Y Q, et al. Chemical and photo-initiated aging enhances transport risk of microplastics in saturated soils: Key factors, mechanisms, and modeling[J].Water Research, 2021, 202: 117407. doi: 10.1016/j.watres.2021.117407

[63]

Wu J Y, Jiang R F, Lin W, et al. Effect of salinity and humic acid on the aggregation and toxicity of polystyrene nanoplastics with different functional groups and charges[J].Environmental Pollution, 2019, 245: 836-843. doi: 10.1016/j.envpol.2018.11.055

[64]

Ma J, Qiu Y, Zhao J Y, et al. Effect of agricultural organic inputs on nanoplastics transport in saturated goethite-coated porous media: Particle size selectivity and role of dissolved organic matter[J].Environmental Science & Technology, 2022, 56(6): 3524-3534.

[65]

Li M, Zhang X W, Yi K X, et al. Transport and deposition of microplastic particles in saturated porous media: Co-effects of clay particles and natural organic matter[J].Environmental Pollution, 2021, 287: 117585. doi: 10.1016/j.envpol.2021.117585

[66]

Li M, He L, Zhang M Y, et al. Cotransport and deposition of iron oxides with different-sized plastic particles in saturated quartz sand[J].Environmental Science & Technology, 2019, 53(7): 3547-3557.

[67]

Li M, He L, Zhang X W, et al. Different surface charged plastic particles have different cotransport behaviors with kaolinite particles in porous media[J].Environmental Pollution, 2020, 267: 115534. doi: 10.1016/j.envpol.2020.115534

[68]

Chen S S, Yang Y T, Jing X Y, et al. Enhanced aging of polystyrene microplastics in sediments under alternating anoxic-oxic conditions[J].Water Research, 2021, 207: 117782. doi: 10.1016/j.watres.2021.117782

[69]

Alimi O S, Farner J M, Tufenkji N, et al. Exposure of nano-plastics to freeze-thaw leads to aggregation and reduced transport in model groundwater environments[J].Water Research, 2021, 189: 116533. doi: 10.1016/j.watres.2020.116533

[70]

Tong M P, He L, Rong H F, et al. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe3O4-biochar amendment[J].Water Research, 2020, 169: 115284-115294. doi: 10.1016/j.watres.2019.115284

[71]

O'Connor D, Pan S, Shen Z, et al. Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles[J].Environment Pollution, 2019, 249: 527-534. doi: 10.1016/j.envpol.2019.03.092

[72]

Lang M F, Yu X Q, Liu J H, et al. Fenton aging signi-ficantly affects the heavy metal adsorption capacity of polystyrene microplastics[J].Science of the Total Environment, 2020, 722: 137762. doi: 10.1016/j.scitotenv.2020.137762

[73]

Jiang Z S, Huang L L, Fan Y X, et al. Contrasting effects of microplastic aging upon the adsorption of sulfonamides and its mechanism[J].Chemical Engineering Journal, 2022, 430(3): 132939.

[74]

Liu G Z, Zhu Z L, Yang Y X, et al. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater[J].Environmental Pollution, 2019, 246: 26-33. doi: 10.1016/j.envpol.2018.11.100

[75]

Prata J C, da Costa J P, Lopes I, et al. A one health perspective of the impacts of microplastics on animal, human and environmental health[J].Science of the Total Environment, 2020, 777: 146094.

[76]

Hahladakis J N, Velis C A, Weber R, et al. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling[J].Journal of Hazardous Materials, 2018, 344: 179-199. doi: 10.1016/j.jhazmat.2017.10.014

[77]

Hermabessiere L, Dehaut A, Paul-Pont I, et al. Occurrence and effects of plastic additives on marine environments and organisms: A review[J].Chemosphere, 2017, 182: 781-793. doi: 10.1016/j.chemosphere.2017.05.096

[78]

Luo H W, Li Y, Zhao Y Y, et al. Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics[J].Environmental Pollution, 2020, 257: 113475. doi: 10.1016/j.envpol.2019.113475

[79]

Rani M, Shim W J, Jang M, et al. Releasing of hexabro-mocyclododecanes from expanded polystyrenes in seawater-field and laboratory experiments[J].Chemosphere, 2017, 185: 798-805. doi: 10.1016/j.chemosphere.2017.07.042

[80]

Paluselli A, Fauvelle V, Galgani F, et al. Phthalate release from plastic fragments and degradation in seawater[J].Environmental Science & Technology, 2019, 53(1): 166-175.

[81]

Nakashima E, Isobe A, Kako S, et al. The potential of oceanic transport and onshore leaching of additive-derived lead by marine macro-plastic debris[J].Marine Pollution Bulletin, 2016, 107(1): 333-339. doi: 10.1016/j.marpolbul.2016.03.038

[82]

Zhan F Q, Zhang H J, Cao R, et al. Release and transformation of BTBPE during the thermal treatment of flame retardant ABS plastics[J].Environmental Science & Technology, 2019, 53(1): 185-193.

[83]

Cao Y R, Lin H J, Zhang K, et al. Microplastics: A major source of phthalate esters in aquatic environments[J].Journal of Hazardous Materials, 2022, 432: 128731. doi: 10.1016/j.jhazmat.2022.128731

[84]

Meng J, Xu B L, Liu F, et al. Effects of chemical and natural ageing on the release of potentially toxic metal additives in commercial PVC microplastics[J].Chemosphere, 2021, 283(4): 131274.

相似文献(共20条)

[1]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[2]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[3]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[4]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[5]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[6]

胡俊栋, 刘崴, 沈亚婷, 路国慧. 天然有机质存在条件下的纳米颗粒与重金属协同行为研究. 岩矿测试, 2013, 32(5): 669-680.

[7]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[8]

蘧丹, 姜世中, 唐阵武, 何洁, 程家丽. 废弃生产场地有机氯农药的残留与迁移特征. 岩矿测试, 2013, 32(4): 649-658.

[9]

范晓媛, 陈忠, 刘晓, 曾凡刚, 席英玉. 含石英二元矿物复配物对聚丙烯酰胺吸附的协同效应. 岩矿测试, 2003, (2): 134-136.

[10]

刘素芳, 韩志文, 岑况, 王亚平, 潘小菲. 汞和镉在土壤中的吸附和运移研究进展. 岩矿测试, 2003, (4): 277-283.

[11]

顾涛, 赵信文, 雷晓庆, 黄长生, 曾敏, 刘学浩, 王节涛. 珠江三角洲崖门镇地区水稻田土壤-植物系统中硒元素分布特征及迁移规律研究. 岩矿测试, 2019, 38(5): 545-555. doi: 10.15898/j.cnki.11-2131/td.201811030118

[12]

刘菲, 王媛媛, 陈家玮. 土壤中单环芳烃定量分析的基质效应研究. 岩矿测试, 2010, 29(5): 481-485.

[13]

于照水, 孙晓玲, . 泡沫塑料吸附富集—石墨炉原子吸收光谱法测定勘查地球化学样品中超痕量金. 岩矿测试, 2002, (4): 266-270.

[14]

, 陈明, 魏连伟. 永定河上游水体与底泥中污染物的分布规律. 岩矿测试, 2001, (2): 131-135141.

[15]

江桂斌, 胡敬田, 梁立娜. 微波辅助萃取技术在有机锡砷汞化合物形态分析中的应用. 岩矿测试, 2003, (2): 137-143150.

[16]

邵坤, 赵改红, 赵朝辉. 腐植酸改性强化磁铁矿吸附水体中铅镉的实验研究. 岩矿测试, 2019, 38(6): 715-723. doi: 10.15898/j.cnki.11-2131/td.201901250017

[17]

张千杰. 天然水中有机污染物的富集与测定. 岩矿测试, 1989, (2): 122-126.

[18]

王向东, 孙鑫, 刘青山, 魏红兵, 王振坤, 潘宏伟. 矿产品中污染物溶解释放研究进展. 岩矿测试, 2013, 32(1): 15-21.

[19]

吴惠明 郭慧清 陈永亨 陈银英 郑燕鹏. 活性炭吸附分离—分光光度法测定硫化矿和土壤中的痕量铊. 岩矿测试, 2001, (4): 275-278.

[20]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

计量
  • PDF下载量(10)
  • 文章访问量(220)
  • HTML全文浏览量(17)
  • 被引次数(0)
目录

Figures And Tables

土壤中微塑料的吸附迁移及老化作用对污染物环境行为的影响研究进展

胡婷婷, 陈家玮