【引用本文】 朱丹尼, 周长松, 李军, 等. 西南典型地下河系统无机-有机指标特征及健康风险评价[J]. 岩矿测试, 2022, 41(3): 463-475. doi: 10.15898/j.cnki.11-2131/td.202201310018
ZHU Danni, ZHOU Changsong, LI Jun, et al. Inorganic-Organic Characteristics and Health Risk Assessment of Typical Underground River System in Southwest China[J]. Rock and Mineral Analysis, 2022, 41(3): 463-475. doi: 10.15898/j.cnki.11-2131/td.202201310018

西南典型地下河系统无机-有机指标特征及健康风险评价

1. 

中国地质科学院岩溶地质研究所,自然资源部/广西岩溶动力学重点实验室,广西 桂林 541004

2. 

联合国教科文组织国际岩溶研究中心,广西 桂林 541004

3. 

广西岩溶资源环境工程技术研究中心,广西 桂林 541004

4. 

河北建筑工程学院市政与环境工程系,河北 张家口 075000

收稿日期: 2022-01-31  修回日期: 2022-03-15  接受日期: 2022-04-30

基金项目: 国家重点研发计划项目(2017YFC0406104); 广西科技计划项目(桂科AB18050026); 中国地质调查局地质调查项目(DD20221758, DD20221658)

作者简介: 朱丹尼,硕士,助理研究员,主要研究方向为岩溶地下水环境。E-mail:zhudanni@mail.cgs.gov.cn

通信作者: 邹胜章,博士,研究员,主要研究方向为岩溶水文地质、环境地质。E-mail:zshengzhang@mail.cgs.gov.cn

Inorganic-Organic Characteristics and Health Risk Assessment of Typical Underground River System in Southwest China

1. 

Key Laboratory of Karst Dynamics, Ministry of Natural Resources/Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China

2. 

International Research Center on Karst under the Auspices of United Nations Educational, Scientific and Cultural Organization, Guilin 541004, China

3. 

Guangxi Karst Resources and Environment Research Center of Engineering Technology, Guilin 541004, China

4. 

Department of Municipal and Environmental Engineering, Hebei University of Architecture, Zhangjiakou 075000, China

Corresponding author: ZOU Shengzhang, zshengzhang@mail.cgs.gov.cn

Received Date: 2022-01-31
Revised Date: 2022-03-15
Accepted Date: 2022-04-30

摘要:岩溶地下水为全球约25%的人口提供饮用水源,地下河作为主要岩溶地下水类型,是中国西南岩溶区重要供水水源,掌握其水质污染状况及人体健康风险,对岩溶区水资源保护与安全用水具有重要意义。本文以广西桂林会仙狮子岩地下河系统为例,采集地下河水样品22组(无机和有机样品各11组),采用电感耦合等离子体质谱、离子色谱、气相色谱-质谱等方法测定11项无机离子、10项金属元素及41项有机指标的质量浓度,运用单指标污染标准指数法、健康风险评价模型揭示了研究区无机与有机指标分布、污染及健康风险。结果表明:①狮子岩地下河水中无机超标指标有NH4+(1.33倍)、Fe(1.2倍)、Al(1.5倍)和Mn(1.01倍),超标点多位于地下河排泄区;检出18项有机物,其中挥发性有机物(VOCs)、半挥发性有机物(SVOCs)和有机氯农药(OCPs)检出率分别为18.75%、30.77%和91.67%,研究区存在普遍的农药残留(49.14~109.83ng/L)。②与地下水对照值相比,研究区受到10项无机指标的轻度~中度污染、14项有机指标的轻度污染,个别采样点受到NO3-、Fe、Al和Mn的较严重~严重污染,一处采样点遭受苯并[a]芘的极严重污染。③经饮用水和皮肤接触两种途径暴露的非致癌健康风险(成人9.98×10-3a-1,儿童1.09×10-2a-1)和致癌健康风险(成人1.33×10-7a-1,儿童2.82×10-7a-1)均在可接受范围内。本文认为研究区存在不同程度的无机和有机污染,但污染物指标对人体暂不构成非致癌和致癌健康风险。

关键词: 地下河系统, 无机指标, 有机指标, 污染评价, 健康风险

要点

(1) 利用电感耦合等离子体质谱等测试方法揭示了研究区无机和有机指标浓度分布特征。

(2) 研究区有机指标检出浓度较低,但地下河水中存在普遍的农药残留。

(3) 研究区存在无机和有机复合污染,但主要污染物对人群暂不构成非致癌和致癌健康风险。

Inorganic-Organic Characteristics and Health Risk Assessment of Typical Underground River System in Southwest China

ABSTRACT

BACKGROUND:

Karst groundwater provides drinking water for about 25% of the world's population. As the main type of karst groundwater, underground rivers are an important water supply source for karst areas in Southwest China. It is of great significance to master the water quality, pollution status and human health risk for water resources protection and safety use in southern karst areas.

OBJECTIVES:

To reveal the chemical compositions, pollution degree and health risk of underground river water.

METHODS:

22 groups of underground river water samples (half inorganic and half organic samples) from the underground river system of Shiziyan in Huixian, Guilin, Guangxi were collected. The concentrations and spatial distribution of 21 inorganic ions and 41 organic indices were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS), ion chromatography (IC) and gas chromatography-mass spectrometry (GC-MS).The single index pollution standard index method was used to evaluate the pollution of 17 inorganic ions and 15 detected organic compounds. The health risk assessment model recommended by the United States Environmental Protection Agency (US EPA) was used to study the human health risk of 10 major pollutants.

RESULTS:

The results showed that: (1) Ca2+ and HCO3- were the dominant ions in the Shiziyan underground river. The concentrations of NH4+, Fe, Al and Mn in the underground river exceeded the groundwater quality standard by 1.33, 1.2, 1.5 and 1.01 times, respectively, and the exceeding points were mostly located in the discharge area of the underground river. 18 organic compounds were detected, of which the detection rates of volatile organic compounds (VOCs), semi volatile organics (SVOCs) and organochlorine pesticides (OCPs) were 18.75%, 30.77% and 91.67% respectively. (2) Compared with the groundwater background values, the underground river water in the study area was slightly-moderately polluted by 10 inorganic indicators and 14 organic compounds. Some sampling points were seriously polluted by NO3-, Fe, Al and Mn, and one sampling point (UR8) was extremely polluted by benzo [a] pyrene. (3) According to the results of health risk assessment, the non-carcinogenic health risks of being exposed to drinking water and for skin exposure were 9.98×10-3 per year for adults and 1.09×10-2 per year for children, and carcinogenic health risks were 1.33×10-7 per year for adults and 2.82×10-7 per year for children, which were within acceptable levels.

CONCLUSIONS:

There are various degrees of inorganic and organic pollution in the study area, but the pollutant indicators do not pose a non-carcinogenic or carcinogenic health risk to the population.

KEY WORDS: underground river system, inorganic indices, organic indices, pollution assessment, human health risk

HIGHLIGHTS

(1) The concentration distribution characteristics of inorganic and organic indices in the study area were revealed by inductively coupled plasma-mass spectrometry mainly.

(2) The detection concentrations of organic indicators in the study area were low, but common pesticide residues were found in the Shiziyan underground river.

(3) There was inorganic and organic compound pollution, yet pollutants did not pose a non-carcinogenic or carcinogenic health risk to the population in the study area.

本文参考文献

[1]

Reberski J L, Terzí J, D. Maurice L, et al. Emerging organic contaminants in karst groundwater: A global level assessment[J/OL]. Journal of Hydrology, 2022, doi: https://doi.org/10.1016/j.jhydrol.2021.127242.

[2]

邹胜章,卢海平,周长松. 岩溶区地下水环境质量调查评估技术方法与实践[M] . 北京: 科学出版社, 2021

Zou S Z,Lu H P,Zhou C S. Technical method and practice of groundwater environmental quality investigation and evaluation in karst area[M] . Beijing: Science Press, 2021
[3]

Zhou C S, Zou S Z, Zhu D N, et al. Pollution pattern of underground river in karst area of the southwest China[J].Journal of Groundwater Science and Engineering, 2018, 6(2): 71-83.

[4]

Li J, Yang G L, Zhu D N, et al. Hydrogeochemistry of karst groundwater for the environmental and health risk assessment: The case of the suburban area of Chongqing (southwest China)[J/OL]. Geochemistry, 2022, doi: https://doi.org/10.1016/j.chemer.2022.125866.

[5]

詹兆君, 陈峰, 杨平恒, 等. 西南典型岩溶地下河系统水文地球化学特征对比: 以重庆市青木关、老龙洞为例[J]. 环境科学, 2016, 37(9): 3365-3374.

Yan Z J, Chen F, Yang P H, et al. Comparison on the hydrogeochemical hharacteristics of hypical karst groundwater system in southwest China, a sase of Qingmuguan and Laolongdong in Chongqing[J]. Environmental Science, 2016, 37(9): 3365-3374.

[6]

叶凯, 孙玉川, 贾亚男, 等. 岩溶地下水水体中有机氯农药和多氯联苯的残留特征及健康风险评价[J]. 环境科学, 2020, 41(12): 5448-5457.

Ye K, Sun Y C, Jia Y N, et al. Residual characteristics and health assessment analysis of OCPs and PCBs in karst groundwater[J]. Environmental Science, 2020, 41(12): 5448-5457.

[7]

蓝家程, 孙玉川, 田萍, 等. 岩溶地下河流域水中多环芳烃污染特征及生态风险评价[J]. 环境科学, 2014, 35(10): 3722-3730.

Lan J C, Sun Y C, Tian P, et al. Contamination and ecological risk assessment of polycyclic aromatic hydrocarbons in water and in karst underground river catchment[J]. Environmental Science, 2014, 35(10): 3722-3730.

[8]

朱琳跃, 蓝家程, 孙玉川, 等. 典型岩溶区土壤和地下水中多环芳烃的分布特征及健康风险研究[J]. 环境科学学报, 2020, 40(9): 3361-3374.

Zhu L Y, Lan J C, Sun Y C, et al. Distribution characteristics and health risks of PAHs in soils and groundwater in typical karst areas[J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3361-3374.

[9]

盛婷, 杨平恒, 谢国文, 等. 基于δ15N和δ18O的农业区地下河硝酸盐污染来源[J]. 环境科学, 2018, 39(10): 4547-4555.

Sheng T, Yang P H, Xie G W, et al. Nitrate-nitrogen pollution sources of an underground river in karst agricultural area using 15N and 18O isotope technique[J]. Environmental Science, 2018, 39(10): 4547-4555.

[10]

Xiang S Z, Wang X S, Ma W, et al. Response of microbial communities of karst river water to antibiotics and microbial source tracking for antibiotics[J].Science of the Total Environment, 2020, 706: 135730. doi: 10.1016/j.scitotenv.2019.135730

[11]

张新钰, 辛宝东, 王晓红, 等. 我国地下水污染研究进展[J]. 地球与环境, 2011, 39(3): 415-422.

Zhang X Y, Xin B D, Wang X H, et al. Progress in research on groundwater pollution in our country[J]. Earth and Environment, 2011, 39(3): 415-422.

[12]

张兆吉, 费宇红, 郭春艳, 等. 华北平原区域地下水污染评价[J]. 吉林大学学报(地球科学版), 2012, 42(5): 1456-1461.

Zhang Z J, Fei Y H, Guo C Y, et al. Regional groundwater contamination assessment in the North China Plain[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(5): 1456-1461.

[13]

李军, 赵一, 邹胜章, 等. 会仙岩溶湿地丰平枯时期地下水金属元素污染与健康风险[J]. 环境科学, 2021, 42(1): 184-194.

Li J, Zhao Y, Zou S Z, et al. Metal pollutions and human health risks on groundwater from wet, normal, and dry periods in Huixian karst wetland, China[J]. Environmental Science, 2021, 42(1): 184-194.

[14]

李军, 邹胜章, 赵一, 等. 会仙岩溶湿地地下水主要离子特征及成因分析[J]. 环境科学, 2021, 42(4): 1750-1760.

Li J, Zou S Z, Zhao Y, et al. Major ionic characteristics and factors of karst groundwater at Huixian karst wetland, China[J]. Environmental Science, 2021, 42(4): 1750-1760.

[15]

Huang L L, Rad S, Xu L, et al. Heavy metals distribution, sources, and ecological risk assessment in Huixian wetland, South China[J/OL]. Water, 2020, 12(2), doi: 10.3390/w12020431.

[16]

Qin L T, Pang X R, Zeng H H, et al. Ecological and human health risk of sulfonamides in surface water and groundwater of Huixian karst wetland in Guilin, China[J].Science of the Total Environment, 2019, . doi: 10.1016/j.scitotenv.2019.134552

[17]

朱丹尼, 邹胜章, 周长松, 等. 桂林会仙岩溶湿地水位动态特征及水文生态效应[J]. 中国岩溶, 2020, 40(4): 661-670.

Zhu D N, Zou S Z, Zhou C S, et al. Dynamic characteristics of water level and hydro-ecological effects in Huixian karst wetland in Guilin[J]. Carsologica Sinica, 2020, 40(4): 661-670.

[18]

吴伊琳. 河北省某市地下水有机污染特征及评价[D]. 石家庄: 河北地质大学, 2020.

Wu Y L. Characteristics and evaluation of groundwater organic pollution in a city of Hebei Province[D]. Shijiazhuang: Hebei GEO University, 2020.

[19]

Li J, Miao X Y, Hao Y P, et al. Health risk assessment of metals (Cu, Pb, Zn, Cr, Cd, As, Hg, Se) in angling fish with different lengths collected from Liuzhou, China[J].International Journal of Environmental Research Public Health, 2020, 17: 2192. doi: 10.3390/ijerph17072192

[20]

Miao X Y, Hao Y P, Tang X, et al. Analysis and health risk assessment of toxic and essential elements of the wild fish caught by anglers in Liuzhou as a large industrial city of China[J].Chemosphere, 2020, 243: 125337. doi: 10.1016/j.chemosphere.2019.125337

[21]

张春艳, 高柏, 郭亚丹, 等. 鄱阳湖区域地下水有机污染物特征与风险评价[J]. 生态毒理学报, 2016, 11(2): 524-530.

Zhang C Y, Gao B, Guo Y D, et al. Pollution characteristics and risk assessment of organic pollutants in groundwater of Poyang Lake[J]. Asian Journal of Ecotoxicology, 2016, 11(2): 524-530.

[22]

张清华, 韦永著, 曹建华, 等. 柳江流域饮用水源地重金属污染与健康风险评价[J]. 环境科学, 2018, 39(4): 1598-1607.

Zhang Q H, Wei Y Z, Cao J H, et al. Heavy metal pollution of the drinking water sources in the Liujiang River Basin, and related health risk assessments[J]. Environmental Science, 2018, 39(4): 1598-1607.

[23]

周巾枚, 蒋忠诚, 徐光黎, 等. 铁矿周边地下水金属元素分布及健康风险评价[J]. 中国环境科学, 2019, 39(5): 1934-1944. doi: 10.3969/j.issn.1000-6923.2019.05.017

Zhou J M, Jiang Z C, Xu G L, et al. Distribution and health risk assessment of metals in groundwater around iron mine[J].China Environmental Science, 2019, 39(5): 1934-1944. doi: 10.3969/j.issn.1000-6923.2019.05.017

[24]

罗庆, 孙丽娜, 张耀华, 等. 细河流域地下水中持久性有机氯污染物的健康风险评价[J]. 水土保持研究, 2011, 18(6): 119-124.

Luo Q, Sun L N, Zhang Y H, et al. Health risk assessment of persistent organochlorine pollutants in groundwater from Xihe River area[J]. Research of Soil and Water Conservation, 2011, 18(6): 119-124.

[25]

赵庆令, 李清彩, 谢江坤, 等. 鲁中南地区双村岩溶水系统地下水中化学致癌物和非致癌物的健康风险评价[J]. 岩矿测试, 2016, 35(1): 90-97.

Zhao Q L, Li Q C, Xie J K, et al. Health risk assessment of carcinogenic and non-carcingenic substances in underground water from the Shuangcun karst system of central southern Shandong Province[J]. Rock and Mineral Analysis, 2016, 35(1): 90-97.

[26]

陈卫平, 彭程伟, 杨阳, 等. 北京市地下水有机氯和有机磷农药健康风险评价[J]. 环境科学, 2018, 39(1): 117-122.

Chen W P, Peng C W, Yang Y, et al. Health risk evaluation of organochlorine and organophosphorous pesticides in groundwater in Beijing[J]. Environmental Science, 2018, 39(1): 117-122.

[27]

李丽君, 王海娇, 马健生, 等. 下辽河平原地下水中挥发性有机物的污染特征及健康风险评价[J]. 岩矿测试, 2021, 40(6): 930-943.

Li L L, Wang H J, Ma J S, et al. Pollution characteristics and health risk assessment of volatile organic compounds in groundwater in the Lower Liaohe River Plain[J]. Rock and Mineral Analysis, 2021, 40(6): 930-943.

[28]

段磊, 王文科, 孙亚乔, 等. 关中盆地浅层地下水氮污染的健康风险评价[J]. 水文地质工程地质, 2011, 38(3): 92-97. doi: 10.3969/j.issn.1000-3665.2011.03.017

Duan L, Wang W K, Sun Y Q, et al. Health risk assessment of "Three Nitrogen" in shallow groundwater in the Guanzhong Basin[J].Hydrogeology and Engineering Geology, 2011, 38(3): 92-97. doi: 10.3969/j.issn.1000-3665.2011.03.017

[29]

朱丹尼, 邹胜章, 周长松, 等. 不同城镇功能区岩溶地下水化学敏感因子识别[J]. 中国岩溶, 2018, 37(4): 484-492.

Zhu D N, Zou S Z, Zhou C S, et al. Identification of hydrochemical sensitive factors of karst groundwater in different functional urban areas[J]. Carsologica Sinica, 2018, 37(4): 484-492.

[30]

Li J, Zhu D N, Zhang S, et al. Application of the hydro- chemistry, stable isotopes and MixSIAR model to identify nitrate sources and transformations in surface water and groundwater of an intensive agricultural karst wetland in Guilin, China[J/OL]. Ecotoxicology and Environmental Safety, 2022, 231, https://doi.org/10.1016/j.ecoenv.2022.113205.

[31]

周巾枚, 蒋忠诚, 徐光黎, 等. 崇左响水地区地下水水质分析及健康风险评价[J]. 环境科学, 2019, 40(6): 2675-2685.

Zhou J M, Jiang Z C, Xu G L, et al. Waterquality analysis and health risk assessment for groundwater at Xiangshui, Chongzuo[J]. Environmental Science, 2019, 40(6): 2675-2685.

[32]

张人权,梁杏,靳孟贵. 水文地质学基础[M] . 北京: 地质出版社, 2011

Zhang R Q,Liang X,Jin M G. General hydrogeology[M] . Beijing: Geological Publishing House, 2011
[33]

朱丹尼, 邹胜章, 李军, 等. 会仙岩溶湿地丰平枯水期地表水污染及灌溉适用性评价[J]. 环境科学, 2021, 42(5): 2240-2250.

Zhu D N, Zou S Z, Li J, et al. Pollution and irrigation applicability of surface water from wet, normal, and dry periods in the Huixian karst wetland, China[J]. Environmental Science, 2021, 42(5): 2240-2250.

[34]

孔祥胜, 祁士华, OramahI T, 等. 广西大石围天坑群地下河水中多环芳烃的污染特征[J]. 环境科学, 2011, 32(4): 1081-1087.

Kong X S, Qi S H, Oramah I T, et al. Contamination of polycyclic aromatic hydrocarbons in surface water in underground river of Dashiwei Tiankeng Group in karst area, Guangxi[J]. Environmental Science, 2011, 32(4): 1081-1087.

[35]

徐蓉桢, 刘菲, 荆继红, 等. 典型浅层孔隙水和岩溶水中多环芳烃分布特征[J]. 岩矿测试, 2018, 37(4): 411-418.

Xu R Z, Liu F, Jin J H, et al. Distribution characteristics of polycyclic aromatic hydrocarbons in typical shallow pore water and karst water[J]. Rock and Mineral Analysis, 2018, 37(4): 411-418.

[36]

张坤锋, 昌盛, 赵少延, 等. 克鲁伦河流域地下水饮用水水源中挥发性有机物的污染特征与风险评价[J]. 环境工程技术学报, 2021, 11(6): 1083-1091.

Zhang K F, Chang S, Zhao S Y, et al. Pollution characteristics and risk assessment of volatile organic compounds in groundwater drinking water sources in Klulun River Basin[J]. Journal of Environmental Engineering Technology, 2021, 11(6): 1083-1091.

[37]

Pan H, Lei H, He X, et al. Spatial distribution of organochlorine and organophosphorus pesticides in soil-groundwater systems and their associated risks in the middle reaches of the Yangtze River Basin[J].Environmental Geochemistry and Health, 2019, 41: 1833-1845. doi: 10.1007/s10653-017-9970-1

[38]

Moreau M, Hadfield J, Hughey J, et al. A baseline assessment of emerging organic contaminants in New Zealand groundwater[J].Science of the Total Environment, 2019, 686: 425-439. doi: 10.1016/j.scitotenv.2019.05.210

[39]

Dong W H, Xie W, Su X S, et al. Review: Micro-organic contaminants in groundwater in China[J].Hydrogeology Journal, 2018, 26: 1351-1369. doi: 10.1007/s10040-018-1760-z

[40]

韦丽丽, 郭芳, 王健哲, 等. 柳州岩溶地下河水体有机氯农药分布特征[J]. 中国岩溶, 2011, 30(1): 16-21. doi: 10.3969/j.issn.1001-4810.2011.01.003

Wei L L, Guo F, Wang J Z, et al. Distribution characteristics of organochlorine pesticides in karst subterranean river in Liuzhou[J].Carsologica Sinica, 2011, 30(1): 16-21. doi: 10.3969/j.issn.1001-4810.2011.01.003

[41]

Kurwadkar S R, Kanel S, Nakarmi A, et al. Groundwater pollution: Occurrence, detection, and remediation of organic and inorganic pollutants[J].Water Environment Research, 2020, 92(10): 1659-1668. doi: 10.1002/wer.1415

[42]

李海明, 陈鸿汉, 郑西来, 等. 地下水中苯并[a]芘来源探讨[J]. 水文地质工程地质, 2006, 33(6): 21-24. doi: 10.3969/j.issn.1000-3665.2006.06.006

Li H M, Chen H H, Zheng X L, et al. A discussion of the source of B[a]P in groundwater[J].Hydrogeology and Engineering Geology, 2006, 33(6): 21-24. doi: 10.3969/j.issn.1000-3665.2006.06.006

相似文献(共20条)

[1]

孟洁, 王静, 肖咸德, 张妍, 翟增秀, 李伟芳. 有机磷农药污染地块异味污染调查与健康风险评估. 岩矿测试, 2021, 40(6): 907-918. doi: 10.15898/j.cnki.11-2131/td.202012140164

[2]

王昌宇, 李永利, 周文辉, 毛磊, 卢震, 胡浩远, 杜鑫, 边鹏, 高琪. 内蒙古包头市固阳县某铁矿区周边土壤多元素测定与健康风险评价. 岩矿测试, 2022, 41(3): 476-487. doi: 10.15898/j.cnki.11-2131/td.202109270129

[3]

刘斯文, 黄园英, 赵文博, 魏吉鑫, 徐春丽, 马嘉宝, 刘久臣, 黄采文. 赣南北部黄陂河流域离子型稀土矿地区水质与健康风险评价. 岩矿测试, 2022, 41(3): 488-498. doi: 10.15898/j.cnki.11-2131/td.202111080170

[4]

孙鹏, 李艳伟, 张连科, 李玉梅, 王维大, 余维佳. 包头市典型工业区表层土壤中重金属污染状况及其潜在生态风险研究. 岩矿测试, 2016, 35(4): 433-439. doi: 10.15898/j.cnki.11-2131/td.2016.04.016

[5]

李丽君, 王海娇, 马健生. 下辽河平原地下水中挥发性有机物的污染特征及健康风险评价. 岩矿测试, 2021, 40(6): 930-943. doi: 10.15898/j.cnki.11-2131/td.202108200105

[6]

赵庆令, 李清彩, 谢江坤, 史启朋, 陈丽娇. 鲁中南地区双村岩溶水系统地下水中化学致癌物和非致癌物的健康风险评价. 岩矿测试, 2016, 35(1): 90-97. doi: 10.15898/j.cnki.11-2131/td.2016.01.015

[7]

郎庆勇. 大气有机污染分析和评价:Ⅱ.几种常见有机污染源及其评价. 岩矿测试, 1995, (4): 274-280.

[8]

R, Jaffe, 郎庆勇. 大气有机污染分析和评价:Ⅲ.美国迈阿密市大气有机污染监测与分析. 岩矿测试, 1997, (2): 118-127.

[9]

樊连杰, 裴建国, 赵良杰, 林永生, 卢丽, 王喆. LA-ICP-MS研究桂林寨底地下河系统中碳酸盐岩稀土元素特征及其形成环境. 岩矿测试, 2016, 35(3): 251-258. doi: 10.15898/j.cnki.11-2131/td.2016.03.006

[10]

郎庆勇. 大气有机污染分析和评价 Ⅰ.采样方法及采样误差. 岩矿测试, 1994, (3): 220-226.

[11]

刘玉龙, 夏凡, 张洪志. 挥发性有机污染物标准物质使用的短期稳定性评价. 岩矿测试, 2012, 31(4): 647-652.

[12]

于扬, 王登红, 于沨, 王伟, 刘丽君, 高娟琴, 郝雪峰. 川西甲基卡大型锂资源基地绿色调查及环境评价指标体系的建立. 岩矿测试, 2019, 38(5): 534-544. doi: 10.15898/j.cnki.11-2131/td.201812180135

[13]

范晨子, 刘永兵, 赵文博, 刘成海, 袁继海, 郭威, 郝乃轩. 云南安宁水系沉积污染物分布特征与风险评价. 岩矿测试, 2021, 40(4): 570-582. doi: 10.15898/j.cnki.11-2131/td.202103080035

[14]

李松, 饶竹. 地下水中12项半挥发性有机污染物测定的质量控制. 岩矿测试, 2009, 28(2): 157-160.

[15]

黄毅, 饶竹. 吹扫捕集气相色谱-质谱法测定全国地下水调查样品中挥发性有机污染物. 岩矿测试, 2009, 28(1): 15-20.

[16]

陶文靖, 黄勤, 李胜生. 顶空进样-气相色谱-质谱法测定地下水中25种挥发性有机污染物. 岩矿测试, 2010, 29(5): 543-546.

[17]

魏峰, 陈海英, 沈小明, 吕爱娟. 地下水中半挥发性有机污染物痕量分析的5个问题探讨. 岩矿测试, 2012, 31(6): 1043-1049.

[18]

余蕾, 张小毅. 气相色谱-三重四极杆质谱法测定地下水中44种有机物污染物. 岩矿测试, 2021, 40(3): 365-374. doi: 10.15898/j.cnki.11-2131/td.202008310120

[19]

宋淑玲, 郭晓辰, 胡小键, 李鸿枝. 气相色谱-高分辨质谱联用测定地下水中16种典型痕量含氯持久性有机污染物. 岩矿测试, 2013, 32(2): 313-318.

[20]

李勤奋, 施小清, 江思珉, 徐清, 李金柱, 方正, 何中发, 夏晨, 刘晓端. 城市土壤中有机和无机组分相关性研究初探. 岩矿测试, 2007, 26(4): 309-312.

计量
  • PDF下载量(2)
  • 文章访问量(51)
  • HTML全文浏览量(13)
  • 被引次数(0)
目录

Figures And Tables

西南典型地下河系统无机-有机指标特征及健康风险评价

朱丹尼, 周长松, 李军, 邹胜章, 卢海平, 樊连杰, 林永生