【引用本文】 万丹, 陈玖斌, 张婷, 等. 镉同位素分馏及其在示踪土壤镉来源和迁移转化过程中的应用进展[J]. 岩矿测试, 2022, 41(3): 341-352. doi: 10.15898/j.cnki.11-2131/td.202110090142
WAN Dan, CHEN Jiubin, ZHANG Ting, et al. Cadmium Isotope Fractionation and Its Applications in Tracing the Source and Fate of Cadmium in the Soil: A Review[J]. Rock and Mineral Analysis, 2022, 41(3): 341-352. doi: 10.15898/j.cnki.11-2131/td.202110090142

镉同位素分馏及其在示踪土壤镉来源和迁移转化过程中的应用进展

天津大学地球系统科学学院,表层地球系统科学研究院,天津 300072

收稿日期: 2021-10-09  修回日期: 2021-11-29  接受日期: 2022-03-14

基金项目: 国家重点研发计划项目(2019YFC1804401);国家自然科学基金项目(42003010);中国博士后基金项目(2021T140507)

作者简介: 万丹,博士,助理研究员,主要从事土壤镉同位素研究。E-mail: wandan@tju.edu.cn

通信作者: 陈玖斌,博士,教授,主要从事同位素地球化学研究。E-mail:jbchen@tju.edu.cn

Cadmium Isotope Fractionation and Its Applications in Tracing the Source and Fate of Cadmium in the Soil: A Review

School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China

Corresponding author: CHEN Jiubin, jbchen@tju.edu.cn

Received Date: 2021-10-09
Revised Date: 2021-11-29
Accepted Date: 2022-03-14

摘要:土壤镉污染已成为危害人体健康的主要因素之一,要实现精准、快速和有效地防治土壤镉污染,首先必须厘清土壤中镉的来源及其迁移转化行为。近年来,随着镉同位素分析技术的进步及其分馏机制认识的深入,镉同位素在土壤镉示踪中展示出了巨大的应用潜力。本文在前人研究的基础上,归纳了土壤样品镉同位素分析前处理方法以及测试技术的研究进展。对于基质复杂的土壤样品,高温高压密闭消解和微波消解可以满足其镉同位素测试要求。在分离纯化镉回收率足够、干扰元素去除彻底的情况下,应用多接收电感耦合等离子体质谱(MC-ICP-MS)分析镉同位素并采用标准-样品匹配法、外标法或双稀释剂法进行质量歧视校正,均可获得较高精度的土壤镉同位素组成数据。同时,本文概括了土壤多个潜在镉源的镉同位素组成以及典型过程(风化淋滤、吸附、沉淀/共沉淀、络合)镉同位素分馏方向与程度。结合最新研究成果,总结了镉同位素在示踪土壤镉来源及其迁移转化过程中的应用。在未来的工作中,需进一步开发和优化高精度镉同位素分析方法,建立土壤镉同位素指纹图谱,揭示土壤多组分、多界面过程中的镉同位素分馏机制和特征。

关键词: 金属稳定同位素, 镉同位素分馏, 多接收电感耦合等离子体质谱法, 源解析, 土壤污染, 迁移转化

要点

(1) 分离纯化技术和MC-ICP-MS的快速发展,实现了对土壤样品中微小镉同位素组成变化的精准测定。

(2) 自然地质储库和各种人为污染源的镉同位素组成存在明显差异。

(3) 风化淋滤、吸附、沉淀/共沉淀、络合等典型土壤过程会导致镉同位素分馏。

镉同位素可以示踪土壤镉来源及其迁移转化过程。

Cadmium Isotope Fractionation and Its Applications in Tracing the Source and Fate of Cadmium in the Soil: A Review

ABSTRACT

BACKGROUND:

Soil cadmium pollution has become one of the main factors that endanger human health. Rapid and effective remediation of Cd pollution soil requires a fundamental understanding of Cd sources and geochemical cycling. With the advancement of Cd isotope analysis technology and the in-depth understanding of its fractionation mechanism, Cd isotopes provide new perspectives for understanding the source and fate of Cd in the soil.

OBJECTIVES:

To systematically summarize the cadmium isotope analysis method, and emphasize the research progress, problems, and potential application of Cd isotopes as tracers in soil.

METHODS:

Sample digestion methods, such as high-temperature digestion bombs, microwave acid digestion, ashing, and acid extraction, are reviewed here with ion-exchange separation and multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS).

RESULTS:

Based on previous studies, this review systematically summarizes the fundamental principle and methodology of Cd isotopic analysis methods. For the soil samples, the high-temperature digestion bombs method and microwave acid digestion can meet its cadmium isotope analysis requirements. With sufficient recovery and complete removal of interfering elements, standard-sample bracketing, external normalization, and double-spike techniques can be used for mass bias correction to obtain accurate and reliable Cd isotope data. In addition, the theoretical basis of soil cadmium isotope tracing was reviewed. This review summarizes the cadmium isotopic composition of multiple potential cadmium sources in soil and the direction and extent of cadmium isotope fractionation in typical processes (weathering leaching, adsorption, precipitation/co-precipitation, complexation). Combined with the latest research results, the application of cadmium isotopes in tracing soil cadmium sources and their migration and transformation processes is summarized.

CONCLUSIONS:

In the future, we should further develop and optimize the high-precision cadmium isotope analysis method, construct the fingerprint map of soil cadmium isotope, and reveal the cadmium isotope fractionation mechanisms in the processes of multi-component and multi-interface.

KEY WORDS: metal stable isotope, cadmium isotope fractionation, MC-ICP-MS, source identification, soil contamination, migration and transformation

HIGHLIGHTS

(1) With the development of chemical separation and MC-ICP-MS, high-precision cadmium isotope analysis has been achieved for soil samples.

(2) Different natural and anthropogenic reservoirs have variable cadmium isotope compositions.

(3) Typical soil processes such as weathering leaching, adsorption, precipitation/co-precipitation, and complexation lead to cadmium isotope fractionation.

(4) Cadmium isotopes can be used to trace the source and fate of cadmium in the soil.

本文参考文献

[1]

Bolan N, Kunhikrishnan A, Thangarajan R, et al. Remediation of heavy metal(loid)s contaminated soils-to mobilize or to immobilize?[J].Journal of Hazardous Materials, 2014, 266: 141-166. doi: 10.1016/j.jhazmat.2013.12.018

[2]

Grant C, Flaten D, Tenuta M, et al. The effect of rate and Cd concentration of repeated phosphate fertilizer applications on seed Cd concentration varies with crop type and environment[J].Plant and Soil, 2013, 372(1): 221-233.

[3]

Teng Y, Wu J, Lu S, et al. Soil and soil environmental quality monitoring in China: A review[J].Environment International, 2014, 69: 177-199. doi: 10.1016/j.envint.2014.04.014

[4]

Wan D, Zhang N, Chen W, et al. Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil[J].Environmental Science and Pollution Research, 2018, 25(32): 32130-32139. doi: 10.1007/s11356-018-3173-x

[5]

Zhao F J, Ma Y, Zhu Y G, et al. Soil contamination in China: Current status and mitigation strategies[J].Environmental Science & Technology, 2015, 49(2): 750-759.

[6]

环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5): 10-11.

Ministry of Environmental Protection, Ministry of Land and Resources. National bulletin of soil pollution survey China[J]. Environmental Protection Industry, 2014, 36(5): 10-11.

[7]

Liu X, Zhong L, Meng J, et al. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health[J].Environmental Pollution, 2018, 239: 308-317. doi: 10.1016/j.envpol.2018.04.033

[8]

Wang P, Chen H, Kopittke P M, et al. Cadmium contam-ination in agricultural soils of China and the impact on food safety[J].Environmental Pollution, 2019, 249: 1038-1048. doi: 10.1016/j.envpol.2019.03.063

[9]

Yang S, Zhao J, Chang S X, et al. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: A synthesis[J].Environment International, 2019, 128: 165-174. doi: 10.1016/j.envint.2019.04.044

[10]

Zhao F J, Wang P. Arsenic and cadmium accumulation in rice and mitigation strategies[J].Plant and Soil, 2020, 446(1): 1-21.

[11]

郭志娟, 周亚龙, 王乔林, 等. 雄安新区土壤重金属污染特征及健康风险[J]. 中国环境科学, 2021, 41(1): 431-441. doi: 10.3969/j.issn.1000-6923.2021.01.049

Guo Z J, Zhou Y L, Wang Q L, et al. Characteristics of soil heavy metal pollution and health risk in Xiong'an New District[J].China Environmental Science, 2021, 41(1): 431-441. doi: 10.3969/j.issn.1000-6923.2021.01.049

[12]

Huang H, Chen H P, Kopittke P M, et al. The voltaic effect as a novel mechanism controlling the remobilization of cadmium in paddy soils during drainage[J].Environmental Science & Technology, 2021, 55(3): 1750-1758.

[13]

Qu C, Chen W, Hu X, et al. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors[J].Environment International, 2019, 131: 104995. doi: 10.1016/j.envint.2019.104995

[14]

赵其国, 骆永明. 论我国土壤保护宏观战略[J]. 中国科学院院刊, 2015, 30(4): 452-458.

Zhao Q G, Luo Y M. The macro strategy of soil protection in China[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(4): 452-458.

[15]

陈卫平, 杨阳, 谢天, 等. 中国农田土壤重金属污染防治挑战与对策[J]. 土壤学报, 2018, 55(2): 261-272.

Chen W P, Yang Y, Xie T, et al. Challenges and countermeasures for heavy metal pollution control in farmlands of China[J]. Acta Pedologica Sinica, 2018, 55(2): 261-272.

[16]

党志, 姚谦, 李晓飞, 等. 矿区土壤中重金属形态分布的地球化学机制[J]. 矿物岩石地球化学通报, 2020, 39(1): 1-11.

Dang Z, Yao Q, Li X F, et al. Geochemical constraints on heavy metal speciation and distribution in contaminated soils of mining areas[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(1): 1-11.

[17]

韦刚健, 黄方, 马金龙, 等. 近十年我国非传统稳定同位素地球化学研究进展[J]. 矿物岩石地球化学通报, 2022, 41(1): 1-44.

Wei G J, Huang F, Ma J L, et al. Progress of non-traditional stable isotope geochemistry of the past decade in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(1): 1-44.

[18]

Teng F Z, Dauphas N, Watkins J M, et al. Non-traditional stable isotopes: Retrospective and prospective[J].Reviews in Mineralogy and Geochemistry, 2017, 82(1): 1-26. doi: 10.2138/rmg.2017.82.1

[19]

Wang L, Jin Y, Weiss D J, et al. Possible application of stable isotope compositions for the identification of metal sources in soil[J].Journal of Hazardous Materials, 2021, 407: 124812. doi: 10.1016/j.jhazmat.2020.124812

[20]

Wiederhold J G. Metal stable isotope signatures as tracers in environmental geochemistry[J].Environmental Science & Technology, 2015, 49(5): 2606-2624.

[21]

Rosman K J R, de Laeter J R. Isotopic fractionation in meteoritic cadmium[J].Nature, 1976, 261(5557): 216-218. doi: 10.1038/261216a0

[22]

Rosman K J R, de Laeter J R, Gorton M P, et al. Cadmium isotope fractionation in fractions of two H3 chondrites[J].Earth and Planetary Science Letters, 1980, 48(1): 166-170. doi: 10.1016/0012-821X(80)90179-X

[23]

Schediwy S, Rosman K J R, de Laeter J R, et al. Isotope fractionation of cadmium in lunar material[J].Earth and Planetary Science Letters, 2006, 243(3): 326-335.

[24]

Wombacher F, Rehkämper M, Mezger K, et al. Cadmium stable isotope cosmochemistry[J].Geochimica et Cosmochimica Acta, 2008, 72(2): 646-667. doi: 10.1016/j.gca.2007.10.024

[25]

Schmitt A D, Galer S J G, Abouchami W, et al. Mass-dependent cadmium isotopic variations in nature with emphasis on the marine environment[J].Earth and Planetary Science Letters, 2009, 277(1): 262-272.

[26]

Zhong Q, Zhou Y, Tsang D C W, et al. Cadmium isotopes as tracers in environmental studies: A review[J].Science of the Total Environment, 2020, 736: 139585. doi: 10.1016/j.scitotenv.2020.139585

[27]

王丹妮, 靳兰兰, 陈斌, 等. 镉同位素体系及其在地球科学和环境科学中的应用[J]. 岩矿测试, 2013, 32(2): 181-191. doi: 10.3969/j.issn.0254-5357.2013.02.002

Wang D N, Jin L L, Chen B, et al. A review of the isotope system of cadmium and its applications in geosciences and environmental sciences[J]. Rock and Mineral Analysis, 2013, 32(2): 181-191. doi: 10.3969/j.issn.0254-5357.2013.02.002

[28]

李海涛, 杨鑫, 雷华基, 等. 镉稳定同位素研究进展[J]. 岩矿测试, 2021, 40(1): 1-15.

Li H T, Yang X, Lei H J, et al. Research progress of cadmium stable isotopes[J]. Rock and Mineral Analysis, 2021, 40(1): 1-15.

[29]

Zhong Q, Yin M, Zhang Q, et al. Cadmium isotopic fractionation in lead-zinc smelting process and signatures in fluvial sediments[J].Journal of Hazardous Materials, 2021, 411: 125015. doi: 10.1016/j.jhazmat.2020.125015

[30]

Xie X, Luo J, Guan L, et al. Cadmium isotope fractionation during leaching with nitrilotriacetic acid[J].Chemical Geology, 2021, 584: 120523. doi: 10.1016/j.chemgeo.2021.120523

[31]

He H T, Xing L C, Qin S J, et al. Equilibrium Cd isotopic fractionation between Cd(OH)2(S), apatite, adsorbed Cd2+, and Cd(aq)2+: Potential application of δ114Cd in evaluating the effectiveness of Cd-contamination remediation[J].Geochemical Journal, 2020, 54(5): 289-297. doi: 10.2343/geochemj.2.0599

[32]

Zhang S N, Gu Y, Zhu Z L, et al. Stable isotope fractionation of cadmium in the soil-rice-human continuum[J].Science of the Total Environment, 2021, 761: 143262. doi: 10.1016/j.scitotenv.2020.143262

[33]

Borovic ˇka J, Ackerman L, Rejšek J, et al. Cadmium isotopic composition of biogenic certified reference materials determined by thermal ionization mass spectrometry with double spike correction[J].Talanta, 2021, 221: 121389. doi: 10.1016/j.talanta.2020.121389

[34]

Li D, Li M L, Liu W R, et al. Cadmium isotope ratios of standard solutions and geological reference materials measured by MC-ICP-MS[J].Geostandards and Geoanalytical Research, 2018, 42(4): 593-605. doi: 10.1111/ggr.12236

[35]

Liu M S, Zhang Q, Zhang Y, et al. High-precision Cd isotope measurements of soil and rock reference materials by MC-ICP-MS with double spike correction[J].Geostandards and Geoanalytical Research, 2020, 44(1): 169-182. doi: 10.1111/ggr.12291

[36]

Tan D, Zhu J M, Wang X, et al. High-sensitivity determination of Cd isotopes in low-Cd geological samples by double spike MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2020, 35(4): 713-727. doi: 10.1039/C9JA00397E

[37]

Yan X, Zhu M, Li W, et al. Cadmium isotope fractionation during adsorption and substitution with iron (oxyhydr)oxides[J].Environmental Science & Technology, 2021, 55(17): 11601-11611.

[38]

Ratié G, Chrastny V, Guinoiseau D, et al. Cadmium isotope fractionation during complexation with humic acid[J].Environmental Science & Technology, 2021, 55(11): 7430-7444.

[39]

Yang J, Li Y, Liu S, et al. Theoretical calculations of Cd isotope fractionation in hydrothermal fluids[J].Chemical Geology, 2015, 391: 74-82. doi: 10.1016/j.chemgeo.2014.10.029

[40]

Wasylenki L E, Swihart J W, Romaniello S J, et al. Cadmium isotope fractionation during adsorption to Mn oxyhydroxide at low and high ionic strength[J].Geochimica et Cosmochimica Acta, 2014, 140: 212-226. doi: 10.1016/j.gca.2014.05.007

[41]

Zhang Y, Wen H, Zhu C, et al. Cd isotope fractionation during simulated and natural weathering[J].Environmental Pollution, 2016, 216: 9-17. doi: 10.1016/j.envpol.2016.04.060

[42]

Xie X, Yan L, Li J, et al. Cadmium isotope fractionation during Cd-calcite coprecipitation: Insight from batch experiment[J].Science of the Total Environment, 2021, 760: 143330. doi: 10.1016/j.scitotenv.2020.143330

[43]

Guinoiseau D, Galer S J G, Abouchami W, et al. Effect of cadmium sulphide precipitation on the partitioning of Cd isotopes: Implications for the oceanic Cd cycle[J].Earth and Planetary Science Letters, 2018, 498: 300-308. doi: 10.1016/j.epsl.2018.06.039

[44]

Horner T J, Rickaby R E M, Henderson G M, et al. Isotopic fractionation of cadmium into calcite[J].Earth and Planetary Science Letters, 2011, 312(1): 243-253.

[45]

Zhao Y, Li Y, Wiggenhauser M, et al. Theoretical isotope fractionation of cadmium during complexation with organic ligands[J].Chemical Geology, 2021, 571: 120178. doi: 10.1016/j.chemgeo.2021.120178

[46]

Wang P, Li Z, Liu J, et al. Apportionment of sources of heavy metals to agricultural soils using isotope fingerprints and multivariate statistical analyses[J].Environmental Pollution, 2019, 249: 208-216. doi: 10.1016/j.envpol.2019.03.034

[47]

刘意章, 肖唐付, 朱建明, 等. 镉同位素及其环境示踪[J]. 地球与环境, 2015, 43(6): 687-696.

Liu Y Z, Xiao T F, Zhu J M, et al. Cadmium isotopes and environmetal tracing[J]. Earth and Environment, 2015, 43(6): 687-696.

[48]

Komárek M, Ratié G, Vaňková Z, et al. Metal isotope complexation with environmentally relevant surfaces: Opening the isotope fractionation black box[J]. Critical Reviews in Environmental Science and Technology, 2021, .

[49]

苗鑫, 陈林捷, 周飞杨, 等. 高精度镉同位素分析样品消解方法对比研究[J]. 分析测试学报, 2021, 40(6): 947-953. doi: 10.3969/j.issn.1004-4957.2021.06.022

Miao X, Chen L J, Zhou F Y, et al. Comparison of sample digestion methods for high precision cadmium isotope analysis[J].Journal of Instrumental Analysis, 2021, 40(6): 947-953. doi: 10.3969/j.issn.1004-4957.2021.06.022

[50]

Fedyunina N N, Seregina I F, Bolshov M A, et al. Investi-gation of the efficiency of the sample pretreatment stage for the determination of the rare earth elements in rock samples by inductively coupled plasma mass spectrometry technique[J].Analytica Chimica Acta, 2012, 713: 97-102. doi: 10.1016/j.aca.2011.11.035

[51]

Park J, Kim J Y, Lee K, et al. Comparison of acid extra-ction and total digestion methods for measuring Cd isotope ratios of environmental samples[J].Environmental Monitoring and Assessment, 2019, 192(1): 41.

[52]

Wei R, Guo Q, Wen H, et al. An analytical method for precise determination of the cadmium isotopic composition in plant samples using multiple collector inductively coupled plasma mass spectrometry[J].Analytical Methods, 2015, 7(6): 2479-2487. doi: 10.1039/C4AY02435D

[53]

Pallavicini N, Engström E, Baxter D C, et al. Cadmium isotope ratio measurements in environmental matrices by MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2014, 29(9): 1570-1584. doi: 10.1039/C4JA00125G

[54]

Lv W X, Yin H M, Liu M S, et al. Effect of the dry ashing method on cadmium isotope measurements in soil and plant samples[J].Geostandards and Geoanalytical Research, 2021, 45(1): 245-256. doi: 10.1111/ggr.12357

[55]

李津, 唐索寒, 马健雄, 等. 金属同位素质谱中分析样品处理的基本原则与方法[J]. 岩矿测试, 2021, 40(5): 627-636.

Li J, Tang S H, Ma J X, et al. Principles and treatment methods for metal isotopes analysis[J]. Rock and Mineral Analysis, 2021, 40(5): 627-636.

[56]

Gault-Ringold M. The marine biogeochemisty of cadmium: Studies of cadmium isotopic variations in the Southern Ocean[D]. Dunedin: University of Otago, 2011.

[57]

张羽旭, 温汉捷, 樊海峰, 等. Cd同位素地质样品的预处理方法研究[J]. 分析测试学报, 2010, 29(6): 633-637.

Zhang Y X, Wen H J, Fan H F, et al. Chemical pre-treatment methods for measurement of Cd isotopic ratio on geological sample[J]. Journal of Instrumental Analysis, 2010, 29(6): 633-637.

[58]

Wombacher F, Rehkämper M, Mezger K, et al. Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICPMS[J].Geochimica et Cosmochimica Acta, 2003, 67(23): 4639-4654. doi: 10.1016/S0016-7037(03)00389-2

[59]

Cloquet C, Rouxel O, Carignan J, et al. Natural cadmium isotopic variations in eight geological reference materials (NIST SRM 2711, BCR 176, GSS-1, GXR-1, GXR-2, GSD-12, NOD-P-1, NOD-A-1) and anthropogenic samples, measured by MC-ICP-MS[J].Geostandards and Geoanalytical Research, 2005, 29(1): 95-106. doi: 10.1111/j.1751-908X.2005.tb00658.x

[60]

Gao B, Liu Y, Sun K, et al. Precise determination of cadmium and lead isotopic compositions in river sediments[J].Analytica Chimica Acta, 2008, 612(1): 114-120. doi: 10.1016/j.aca.2008.02.020

[61]

杜晨. 镉同位素分析及其古海洋环境指示意义[D]. 武汉: 中国地质大学(武汉), 2015.

Du C. Cadmium isotope analytical method and its paleo-ocean environmental sugnificance[D]. Wuhan: China University of Geosciences (Wuhan), 2015.

[62]

段桂玲, 段瑞春, 谭娟娟, 等. 土壤样品镉同位素分析中Cd与Sn有效分离方法的改进[J]. 岩矿测试, 2016, 35(1): 10-16.

Duan G L, Duan R C, Tan J J, et al. Improvement on effective separation between cadmium and tin in soil samples for the determination of cadmium isotopic composition[J]. Rock and Mineral Analysis, 2016, 35(1): 10-16.

[63]

谢胜凯, 曾远, 刘瑞萍, 等. AG-MP-1M在氢溴酸体系中分离镉的方法[J]. 核化学与放射化学, 2020, 42(4): 256-261.

Xie S K, Zeng Y, Liu R P, et al. Separation of cadmium in hydrobromic acid by anion resin AG-MP-1M[J]. Journal of Nuclear and Radiochemistry, 2020, 42(4): 256-261.

[64]

Zhou F Y, He D, Miao X, et al. Development of an automatic column chromatography separation device for metal isotope analysis based on droplet counting[J].Analytical Chemistry, 2021, 93(19): 7196-7203. doi: 10.1021/acs.analchem.1c00145

[65]

朱志勇, 朱祥坤, 杨涛, 等. 自动分离提纯系统的研制及其在同位素分析测试中的应用[J]. 岩矿测试, 2020, 39(3): 384-390.

Zhu Z Y, Zhu X K, Yang T, et al. A fully automated chemical separation and purification system and its application to isotope analysis[J]. Rock and Mineral Analysis, 2020, 39(3): 384-390.

[66]

Böhlke J K, Laeter J R D, Bièvre P D, et al. Isotopic compositions of the elements, 2001[J].Journal of Physical and Chemical Reference Data, 2005, 34(1): 57-67. doi: 10.1063/1.1836764

[67]

Abouchami W, Galer S J G, de Baar H J W, et al. Biogeo-chemical cycling of cadmium isotopes in the Southern Ocean along the zero meridian[J].Geochimica et Cosmochimica Acta, 2014, 127: 348-367. doi: 10.1016/j.gca.2013.10.022

[68]

Wen H, Zhang Y, Cloquet C, et al. Tracing sources of pollution in soils from the Jinding Pb-Zn mining district in China using cadmium and lead isotopes[J].Applied Geochemistry, 2015, 52: 147-154. doi: 10.1016/j.apgeochem.2014.11.025

[69]

Lu Z, Zhu J M, Tan D, et al. δ114/110Cd values of a suite of different reference materials[J].Geostandards and Geoanalytical Research, 2021, 45(3): 565-581. doi: 10.1111/ggr.12380

[70]

Peng H, He D, Guo R, et al. High precision cadmium isotope analysis of geological reference materials by double spike MC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2021, 36(2): 390-398. doi: 10.1039/D0JA00424C

[71]

Chrastny V, adková E, Vaněk A, et al. Cadmium isotope fractionation within the soil profile complicates source identification in relation to Pb-Zn mining and smelting processes[J].Chemical Geology, 2015, 405: 1-9. doi: 10.1016/j.chemgeo.2015.04.002

[72]

Zhu C, Wen H, Zhang Y, et al. Characteristics of Cd isotopic compositions and their genetic significance in the lead-zinc deposits of SW China[J].Science China Earth Sciences, 2013, 56(12): 2056-2065. doi: 10.1007/s11430-013-4668-4

[73]

Shiel A E, Weis D, Orians K J, et al. Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining[J].Science of the Total Environment, 2010, 408(11): 2357-2368. doi: 10.1016/j.scitotenv.2010.02.016

[74]

Martinková E, Chrastny V, Francová M, et al. Cadmium isotope fractionation of materials derived from various industrial processes[J].Journal of Hazardous Materials, 2016, 302: 114-119. doi: 10.1016/j.jhazmat.2015.09.039

[75]

Wombacher F, Rehkämper M, Mezger K, et al. Determination of the mass-dependence of cadmium isotope fractiona-tion during evaporation[J].Geochimica et Cosmochimica Acta, 2004, 68(10): 2349-2357. doi: 10.1016/j.gca.2003.12.013

[76]

Cloquet C, Carignan J, Libourel G, et al. Tracing source pollution in soils using cadmium and lead isotopes[J].Environmental Science & Technology, 2006, 40(8): 2525-2530.

[77]

Imseng M, Wiggenhauser M, Keller A, et al. Fate of Cd in agricultural soils: A stable isotope approach to anthropogenic impact, soil formation, and soil-plant cycling[J].Environmental Science & Technology, 2018, 52(4): 1919-1928.

[78]

Salmanzadeh M, Hartland A, Stirling C H, et al. Isotope tracing of long-term cadmium fluxes in an agricultural soil[J].Environmental Science & Technology, 2017, 51(13): 7369-7377.

[79]

Barraza F, Moore R E T, Rehkämper M, et al. Cadmium isotope fractionation in the soil -cacao systems of ecuador: A pilot field study[J].RSC Advances, 2019, 9(58): 34011-34022. doi: 10.1039/C9RA05516A

[80]

Gou W, Li W, Ji J, et al. Zinc isotope fractionation during sorption onto Al oxides: Atomic level understanding from EXAFS[J].Environmental Science & Technology, 2018, 52(16): 9087-9096.

[81]

李霞, 张慧鸣, 徐震, 等. 农田Cd和Hg污染的来源解析与风险评价研究[J]. 农业环境科学学报, 2016, 35(7): 1314-1320.

Li X, Zhang H M, Xu Z, et al. Source apportionment and risk assessmet of Cd and Hg pollution in farmland[J]. Journal of Agro-Environment Science, 2016, 35(7): 1314-1320.

[82]

Wiggenhauser M, Bigalke M, Imseng M, et al. Using isotopes to trace freshly applied cadmium through mineral phosphorus fertilization in soil-fertilizer-plant systems[J].Science of the Total Environment, 2019, 648: 779-786. doi: 10.1016/j.scitotenv.2018.08.127

相似文献(共20条)

[1]

李子夏, 逯海. 一步离子交换-多接收电感耦合等离子体质谱法测定高钙生物样品的硼同位素组成. 岩矿测试, 2020, 39(3): 417-424. doi: 10.15898/j.cnki.11-2131/td.201909290141

[2]

戴梦宁, 宗春蕾, 袁洪林. 高Rb/Sr岩石样品中Sr同位素多接收等离子体质谱分析校正方法研究. 岩矿测试, 2012, 31(1): 95-102.

[3]

祁彦洁, 刘菲. 地下水中抗生素污染检测分析研究进展. 岩矿测试, 2014, 33(1): 67-73.

[4]

王亚平, 鲍征宇. 恬矿库周围土壤中重金属存在形态特征研究. 岩矿测试, 2000, (1): 7-13.

[5]

唐索寒, 李津, 梁细荣, 张利国, 李国占, 濮巍, 李潮峰, 杨岳衡, 储著银, 张俊, 侯可军, 王晓明. 钕同位素比值143Nd/144Nd标准溶液研制. 岩矿测试, 2017, 36(2): 163-170. doi: 10.15898/j.cnki.11-2131/td.2017.02.010

[6]

周莉, 石贵勇, 付宇, 关瑶, 陈来国. 广州市大气颗粒物PM2.5显微形貌特征和来源解析. 岩矿测试, 2016, 35(3): 302-309. doi: 10.15898/j.cnki.11-2131/td.2016.03.014

[7]

刘婉, 李丹丹, 刘盛遨. 多接收器电感耦合等离子体质谱法测定土壤标准物质铜同位素组成. 岩矿测试, 2021, 40(4): 561-569. doi: 10.15898/j.cnki.11-2131/td.202012130163

[8]

高博, 梁细荣, 刘颖, 胡光黔, 曾文, 涂湘林. 多接收器电感耦合等离子体质谱法测定镉标准溶液中镉的同位素组成. 岩矿测试, 2008, 27(5): 321-324.

[9]

袁永海, 杨锋, 余红霞, 刘希军, 许继峰. 微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成. 岩矿测试, 2018, 37(4): 356-363. doi: 10.15898/j.cnki.11-2131/td.201707290122

[10]

陈江峰, 杨刚, 杜安道, 屈文俊, 杨胜洪. 电感耦合等离子体质谱法测量铼和锇同位素比值的质量分馏校正. 岩矿测试, 2007, 26(1): 4-8.

[11]

侯可军, 秦燕, 李延河, 范昌福. 磷灰石Sr-Nd同位素的激光剥蚀-多接收器电感耦合等离子体质谱微区分析. 岩矿测试, 2013, 32(4): 547-554.

[12]

赵悦, 侯可军, 田世洪, 杨丹, 苏嫒娜. 常用锂同位素地质标准物质的多接收器电感耦合等离子体质谱分析研究. 岩矿测试, 2015, 34(1): 28-39. doi: 10.15898/j.cnki.11-2131/td.2015.01.004

[13]

陈保冬, 张莘, 伍松林, 李林凤. 丛枝菌根影响土壤-植物系统中重金属迁移转化和累积过程的机制及其生态应用. 岩矿测试, 2019, 38(1): 1-25. doi: 10.15898/j.cnki.11-2131/td.201807110083

[14]

梁细荣 李杰 漆亮 马金龙. 多接收器等离子体质谱精确测定铼含量及其同位素丰度. 岩矿测试, 2005, (1): 1-6.

[15]

何学贤, 李世珍, 王进辉, 唐索寒, 朱祥坤, 蔡俊军. 用于多接收器等离子体质谱铜铁锌同位素测定的离子交换分离方法. 岩矿测试, 2006, 25(1): 5-8.

[16]

邢旭东, 张建新. 洞庭湖镉迁移转化的马尔可夫模型评价. 岩矿测试, 2007, 26(4): 339-342.

[17]

唐索寒, 朱祥坤, 李津, 闫斌, 李世珍, 李志红, 王跃, 孙剑. 用于多接收器等离子体质谱测定的铁铜锌同位素标准溶液研制. 岩矿测试, 2016, 35(2): 127-133. doi: 10.15898/j.cnki.11-2131/td.2016.02.003

[18]

李海涛, 杨鑫, 雷华基, 杨艳, 靳兰兰, 胡圣虹. 镉稳定同位素研究进展. 岩矿测试, 2021, 40(1): 1-15. doi: 10.15898/j.cnki.11-2131/td.202012090160

[19]

刘纯瑶, 苟龙飞, 邓丽, 金章东. 离子交换过程中锂同位素分馏对锂同位素测试准确度的影响. 岩矿测试, 2019, 38(1): 35-44. doi: 10.15898/j.cnki.11-2131/td.201806060070

[20]

郝新丽, 韩思航, 杨磊, 戴忆竹, 黄璐瑶, 王竞铮. 基于热转换元素分析同位素比质谱法研究水样中有机物对氢稳定同位素比值的影响. 岩矿测试, 2019, 38(5): 503-509. doi: 10.15898/j.cnki.11-2131/td.201811150121

计量
  • PDF下载量(8)
  • 文章访问量(213)
  • HTML全文浏览量(26)
  • 被引次数(0)
目录

Figures And Tables

镉同位素分馏及其在示踪土壤镉来源和迁移转化过程中的应用进展

万丹, 陈玖斌, 张婷, 安宇宸, 帅旺财