【引用本文】 龚磊, 王新峰, 宋绵, 等. 江西兴国县潜在偏硅酸矿泉水水化学特征及水质健康功能评价[J]. 岩矿测试, 2021, 40(6): 894-906. doi: 10.15898/j.cnki.11-2131/td.202109300138
GONG Lei, WANG Xin-feng, SONG Mian, et al. Hydrochemical Characteristics and Water Quality Health Function Evaluation of Potential Metasilicate Mineral Water in Xingguo County, Jiangxi Province[J]. Rock and Mineral Analysis, 2021, 40(6): 894-906. doi: 10.15898/j.cnki.11-2131/td.202109300138

江西兴国县潜在偏硅酸矿泉水水化学特征及水质健康功能评价

1. 

河北省高校生态环境地质应用技术研发中心, 河北 石家庄 050031

2. 

中国地质调查局水文地质环境地质调查中心, 河北 保定 071051

3. 

中国地质调查局地下水勘查与开发工程技术研究中心, 河北 保定 071051

4. 

江西有色地质勘查二队, 江西 赣州 343000

收稿日期: 2021-09-30  修回日期: 2021-11-02  接受日期: 2021-11-15

基金项目: 中国地质调查局地质调查项目(DD20179262,DD20190259);河北省高校生态环境地质应用技术研发中心开放研究基金资助项目(JSYF-Z202101)

作者简介: 龚磊, 硕士, 工程师, 主要从事基岩山区水文地质调查与研究等工作。E-mail: gonglei@mail.cgs.gov.cn

通信作者: 宋绵, 硕士, 工程师, 主要从事基岩山区水文地质调查与研究等工作。E-mail: songmian@mail.cgs.gov.cn

Hydrochemical Characteristics and Water Quality Health Function Evaluation of Potential Metasilicate Mineral Water in Xingguo County, Jiangxi Province

1. 

Hebei Center for Ecological and Environmental Geology Research, Shijiazhuang 050031, China

2. 

Center for Hydrogeology and Environmental Geology, China Geological Survey, Baoding 071051, China

3. 

Center for Groundwater Exploration and Development Engineering Technology Research, China Geological Survey, Baoding 071051, China

4. 

Jiangxi Nonferrous Geological Exploration Team No. 2, Ganzhou 343000, China

Corresponding author: SONG Mian, songmian@mail.cgs.gov.cn

Received Date: 2021-09-30
Revised Date: 2021-11-02
Accepted Date: 2021-11-15

摘要:江西兴国县地下水中富含偏硅酸,水资源丰富,但对矿泉水资源禀赋等研究相对薄弱,开展该县偏硅酸矿泉水水化学特征和健康功能研究,可为当地发展矿泉水产业、实施乡村振兴战略提供基础支撑。本文应用数理统计、水化学分析、离子比值等多种分析方法研究了兴国县潜在偏硅酸矿泉水的分布、水化学特征以及成因与物质来源,并基于感官指数和健康指数对其健康功能进行了评价。结果表明:潜在偏硅酸矿泉水主要分布在岩浆岩裂隙含水岩组、碎屑岩孔隙裂隙含水岩组和变质岩裂隙含水岩组中,这三类含水岩组的调查水样中,发现潜在偏硅酸矿泉水的比例分别为48.5%、45.7%、29.6%,且主要分布在海拔400m以下区域。潜在偏硅酸矿泉水的偏硅酸含量多集中在32~40mg/L之间,主要来自硅酸盐矿物的水解;在变质岩、岩浆岩裂隙含水岩组区,偏硅酸的富集以溶滤作用为主;在碎屑岩孔隙裂隙含水岩组区,偏硅酸的富集受溶滤作用和阳离子交替吸附作用共同影响。该县岩浆岩裂隙含水组区潜在偏硅酸矿泉水口感最佳,深层碎屑岩孔隙含水组区潜在偏硅酸矿泉水健康指数相对较高。本文认为,兴国县矿泉水勘查开发靶区宜以岩浆岩裂隙含水岩组区和深层碎屑岩孔隙裂隙含水岩组区为主。研究成果可为揭示兴国县偏硅酸矿泉水资源价值和功能提供参考。

关键词: 潜在偏硅酸矿泉水, 水化学特征, 离子比值法, 水质健康功能评价, 兴国县

要点

(1) 揭示了兴国县潜在偏硅酸矿泉水的赋存特征、水化学成因和物质来源。

(2) 兴国县岩浆岩裂隙含水组区潜在偏硅酸矿泉水口感最佳,深层碎屑岩孔隙含水组区潜在偏硅酸矿泉水健康指数相对较高。

(3) 兴国县矿泉水勘查开发应以深层碎屑岩孔隙裂隙含水岩组和岩浆岩裂隙含水岩组为主。

Hydrochemical Characteristics and Water Quality Health Function Evaluation of Potential Metasilicate Mineral Water in Xingguo County, Jiangxi Province

ABSTRACT

BACKGROUND:

The groundwater in Xingguo County is rich in metasilicic acid, but the research on the endowment characteristics and genetic mechanism of mineral water resources is relatively weak, which restricts the development of the mineral water industry in Xingguo County to some extent. Research on the chemical characteristics and health functions of metasilicate mineral water in the county provides basic support for the development of the local mineral water industry and the implementation of a revitalization strategy.

OBJECTIVES:

To summarize the distribution characteristics of metasilicate mineral water in Xingguo County and evaluate its health function.

METHODS:

Mathematical statistics, water chemistry analysis, ion ratio and other analytical methods were used to study the distribution, water chemistry characteristics, genesis and material sources of potential metasilicate mineral water in Xingguo County, and its health function based on sensory index and health index was evaluated.

RESULTS:

Potential metasilicate mineral water was mainly distributed in the area below 400m above sea level, and it was distributed primarily in a magmatic rock fissure water-bearing rock formation, a clastic rock pore fissure water-bearing rock formation and a metamorphic rock fissure water-bearing rock formation. In the investigated water samples of these three types of water-bearing rock formations, the proportion of potential metasilicate mineral water was 48.5%, 45.7% and 29.6%, respectively. The metasilicic acid content of potential metasilicate mineral water was mostly between 32 and 40mg/L, mainly from the hydrolysis of silicate minerals. The enrichment of metasilicic acid was caused by solution filtration in the metamorphic rock and magmatic rock fracture water-bearing formation area, and was jointly affected by solution filtration and cation alternating adsorption in the clastic rock pore fracture water-bearing formation area. The potential metasilicate mineral water in the magmatic rock fracture water-bearing group area had the best taste, and the deep clastic rock pore water bearing group area had a relatively high health index.

CONCLUSIONS:

The results of this study suggest that the target area of mineral water exploration and development in Xingguo County should be in magmatic rock fissure water-bearing rock formation areas and deep clastic rock pore fissure water-bearing rock formation areas. The research results provide reference for revealing the value and function of metasilicate mineral water resources in Xingguo County.

KEY WORDS: potential metasilicate mineral water, hydrochemical characteristics, ionic ratio method, water quality health function evaluation, Xingguo County

HIGHLIGHTS

(1) The occurrence characteristics, hydrochemical origin and material source of potential metasilicate mineral water in Xingguo County were revealed.

(2) The potential metasilicate mineral water in a magmatic rock fracture water-bearing group area had the best taste, and the potential metasilicate mineral water in the deep clastic rock pore water-bearing group area had a relatively high health index.

(3) Mineral water exploration and development in Xingguo County should focus on deep clastic rock pore fissure aquifers and magmatic rock fissure aquifers.

本文参考文献

[1]

Jurkić L M, Cepanec I, Pavelić S K, et al. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy[J]. Nutrition & Metabolism, 2013, 10(1): 1-12.

[2]

陈荣河. 高偏硅酸天然矿泉水的生物学效应研究[D]. 福州: 福建医科大学, 2016.

Chen R H. Biological effects of metasilicate-rich natural mineral water[D]. Fuzhou: Fujian Medical University, 2016.

[3]

王亚平, 许春雪, 代阿芳, 等. 硅钼黄分光光度法测定地下水中偏硅酸的不确定度评定[J]. 岩矿测试, 2010, 29(5): 601-606. doi: 10.3969/j.issn.0254-5357.2010.05.026

Wang Y P, Xu C X, Dai A F, et al. Uncertainty evaluation for the determination of metasilicic acid in groundwater samples by molybdosilicate yellow spectro-photometry[J]. Rock and Mineral Analysis, 2010, 29(5): 601-606. doi: 10.3969/j.issn.0254-5357.2010.05.026

[4]

舒为群, 罗教华, 张建江, 等. 饮水和食物中可溶性硅酸与人体健康的关系[J]. 中华预防医学杂志, 2020, 54(6): 702-707. doi: 10.3760/cma.j.cn112150-20200318-00378

Shu W Q, Luo J H, Zhang J J, et al. The relationship between soluble silicate acid in drinking water and food and human health[J].Chinese Journal of Preventive Medicine, 2020, 54(6): 702-707. doi: 10.3760/cma.j.cn112150-20200318-00378

[5]

张凤鸿. 国内外瓶装水法规解析——天然矿泉水篇[J]. 食品安全导刊, 2019, (9): 44-46.

Zhang F H. Analysis of bottled water laws and regulations at home and abroad: Natural mineral water chapter[J].China Food Safety Magazine, 2019, (9): 44-46.

[6]

张文卿, 王文凤, 刘淑芹, 等. 长白山矿泉水补给径流与排泄关系[J]. 河海大学学报(自然科学版), 2019, 47(2): 108-113.

Zhang W Q, Wang W F, Liu S Q, et al. Relationship of recharge runoff and drainage for the mineral water in the Changbai Mountain[J]. Journal of Hohai University(Natural Sciences), 2019, 47(2): 108-113.

[7]

单婷婷, 徐世光, 范柱国, 等. 昆明西山偏硅酸矿泉水特征及形成机理[J]. 昆明理工大学学报(自然科学版), 2019, 44(2): 39-47.

Shan T T, Xu S G, Fan Z G, et al. Characteristics and formation mechanism of metasilicate mineral water in Xishan Mountain of Kunming[J]. Journal of Kunming University of Science and Technology (Natural Science), 2019, 44(2): 39-47.

[8]

张贵, 张华, 王波, 等. 滇东岩溶高原矿泉水类型及地质控制[J]. 地球学报, 2021, 42(3): 333-340.

Zhang G, Zhang H, Wang B, et al. Mineral water types and geological control in karst plateau of eastern Yunnan[J].Acta Geoscientica Sinica, 2021, 42(3): 333-340.

[9]

危润初. 靖宇国家级自然保护区天然矿泉水形成机理研究[D]. 长春: 吉林大学, 2014.

Wei Y C. Study on the formation mechanism of natural mineral water in Jingyu National Nature Reserve[D]. Changchun: Jilin University, 2014.

[10]

Lee J M, Koh D C, Chae G T, et al. Integrated assessment of major element geochemistry and geological setting of traditional natural mineral water sources in South Korea at the national scale[J]. Journal of Hydrology, 2021, 598: 1-18.

[11]

何锦, 马雪梅, 邓启军, 等. 河北省张北县新生代玄武岩偏硅酸矿泉水化学特征及成因[J]. 中国地质, 2021, .

He J, Ma X M, Deng Q J, et al. Hydrochemical characteristics and formation mechanism of metasilicate mineral water in a Cenozoic basaltic aquifer in Zhangbei County, Hebei Province[J].Geology in China, 2021, .

[12]

孙厚云, 卫晓锋, 孙晓明, 等. 御道口汉诺坝玄武岩偏硅酸矿泉水形成机制及其地质建造制约[J]. 地球科学, 2020, 45(11): 4236-4253.

Sun H Y, Wei X F, Sun X M, et al. Formation mechanism and geological construction constraints of metasilicate mineral water in Yudaokou, Hannuoba basalt area[J]. Earth Science, 2020, 45(11): 4236-4253.

[13]

马于曦, 卞建民, 孙晓庆, 等. 吉林省抚松县天然矿泉水水化学特征及健康评价[J]. 吉林农业大学学报, 2021, 43(3): 355-362.

Ma Y X, Bian J M, Sun X Q, et al. Hydrochemical characteristics and health evaluation of natural mineral water in Fusong County, Jilin Province[J]. Journal of Jilin Agricultural University, 2021, 43(3): 355-362.

[14]

Davenward S, Bentham P, Wright J, et al. Silicon-rich mineral water as a non-invasive test of the 'aluminum hypothesis' in Alzheimer's disease[J]. Journal of Alzheimers Disease, 2013, 33(2): 423-430.

[15]

Jones K, Linhart C, Hawkins C, et al. Urinary excretion of aluminium and silicon in secondary progressive multiple sclerosis[J].Ebiomedicine, 2017, 26: 60-67. doi: 10.1016/j.ebiom.2017.10.028

[16]

兴国县地方志编纂委员会. 兴国县志[M] . 西安: 三秦出版社, 2009

Xingguo County Local Chronicles Compilation Committee . Xingguo County chronicles[M] . Xi'an: Sanqin Publishing House, 2009
[17]

龚磊, 王新峰, 宋绵, 等. 江西兴国县溶解性总固体分布规律初探[J]. 地球学报, 2018, 39(5): 586-591.

Gong L, Wang X F, Song M, et al. Characteristics of total dissolved solids in Xingguo County, Jiangxi Province[J]. Acta Geoscientica Sinica, 2018, 39(5): 586-591.

[18]

贾亮亮, 田晓华, 刘华杰, 等. 安新县地下水多组分含量分析及水质评价[J]. 中国农学通报, 2021, 37(14): 78-83. doi: 10.11924/j.issn.1000-6850.casb2021-0134

Jia L L, Tian X H, Liu H J, et al. Multi-component content analysis and water quality evaluation of groundwater in Anxin[J].Chinese Agricultural Science Bulletin, 2021, 37(14): 78-83. doi: 10.11924/j.issn.1000-6850.casb2021-0134

[19]

张涛, 何锦, 李敬杰, 等. 蛤蟆通河流域地下水化学特征及控制因素[J]. 环境科学, 2018, 39(11): 4981-4990.

Zhang T, He J, Li J J, et al. Major ionic features and possible controls in the groundwater in the Hamatong River Basin[J].Environmental Science, 2018, 39(11): 4981-4990.

[20]

朱洲洋, 肖长来, 梁秀娟, 等. 安图县玄武岩区偏硅酸型天然矿泉水水化学特征及形成机理[J]. 水利水电技术, 2021, 52(10): 146-156.

Zhu Z Y, Xiao C L, Liang X J, et al. Hydrochemical characteristics and formation mechanism of metasilicic acid type natural mineral water in basalt area of Antu County[J]. Water Resources and Hydropower Engineering, 2021, 52(10): 146-156.

[21]

于扬, 王伟, 王登红, 等. 水化学找矿法及其在大型资源基地绿色调查中的应用——以川西九龙地区地表水化学找矿为例[J]. 岩矿测试, 2021, 40(2): 227-238.

Yu Y, Wang W, Wang D H, et al. Hydrochemical prospecting and its application in green investigation for the large mineral resource base: A case study from Jiulong area in western Sichuan Province[J]. Rock and Mineral Analysis, 2021, 40(2): 227-238.

[22]

王大纯,张人权. 水文地质学基础[M] . 北京: 地质出版社, 1995

Wang D C,Zhang R Q. Hydrogeology foundation[M] . Beijing: Geological Publishing House, 1995
[23]

范晨子, 刘永兵, 赵文博, 等. 云南安宁水系沉积污染物分布特征与风险评价[J]. 岩矿测试, 2021, 40(4): 570-582.

Fan C Z, Liu Y B, Zhao W B, et al. Pollution distribution characteristics and ecological risk assessment of heavy metals and polycyclic aromatic hydrocarbons in the river sediments in Anning, Yunnan Province[J]. Rock and Mineral Analysis, 2021, 40(4): 570-582.

[24]

Andres M, Paul S. Groundwater chemistry and the gibbs diagram[J]. Applied Geochemistry, 2018, 97(1): 209-212.

[25]

Ren X F, Li P Y, He X D, et al. Hydrogeochemical processes affecting groundwater chemistry in the central part of the Guanzhong Casin, China[J].Archives of Environmental Contamination and Toxicology, 2021, 80: 74-91. doi: 10.1007/s00244-020-00772-5

[26]

齐玉涵, 张春艳, 程艳红, 等. 郑州市区地下水水化学演变及成因分析[J]. 工程勘察, 2021, 49(9): 39-45.

Qi Y H, Zhang C Y, Cheng Y H, et al. Hydrochemical evolution and cause analysis of groundwater in Zhengzhou downtown[J].Geotechnical Investigation & Surveying, 2021, 49(9): 39-45.

[27]

孙英, 周金龙, 魏兴, 等. 巴楚县平原区地下水水化学特征及成因分析[J]. 环境化学, 2019, 38(11): 2601-2609.

Sun Y, Zhou J L, Wei X, et al. Hydrochemical characteristics and cause analysis of groundwater in the plain area of Bachu County[J]. Environmental Chemistry, 2019, 38(11): 2601-2609.

[28]

Xiao J, Jin Z D, Wang J, et al. Hydrochemical charact-eristics, controlling factors and solute sources of groundwater within the Tarim River Basin in the extreme arid region, NW Tibetan Plateau[J].Quaternary International, 2015, 380-381: 237-246. doi: 10.1016/j.quaint.2015.01.021

[29]

张振国, 何江涛, 王磊, 等. 衡水地区深层地下水水化学特征及其演化过程[J]. 现代地质, 2018, 32(3): 565-573.

Zhang Z G, He J T, Wang L, et al. Hydrochemical characteristics and evolution processes of deep groundwater in Hengshui area[J]. Geoscience, 2018, 32(3): 565-573.

[30]

左禹政, 安艳玲, 吴起鑫, 等. 贵州省都柳江流域水化学特征研究[J]. 中国环境科学, 2017, 37(7): 2684-2690. doi: 10.3969/j.issn.1000-6923.2017.07.033

Zuo Y Z, An Y L, Wu Q X, et al. Study on the hydrochemical characteristics of Duliu River Basin in Guizhou Province[J].China Environmental Science, 2017, 37(7): 2684-2690. doi: 10.3969/j.issn.1000-6923.2017.07.033

[31]

魏善明, 丁冠涛, 袁国霞, 等. 山东省东汶河沂南地区地下水水化学特征及形成机理[J]. 地质学报, 2021, 95(6): 1973-1983. doi: 10.3969/j.issn.0001-5717.2021.06.021

Wei S M, Ding G T, Yuan G X, et al. Hydrochemical characteristics and formation mechanism of groundwater in Yi'nan, East Wenhe River Basin in Shandong Province[J].Acta Geologica Sinica, 2021, 95(6): 1973-1983. doi: 10.3969/j.issn.0001-5717.2021.06.021

[32]

孙岐发, 孙茁桉, 贾林刚, 等. 长春新区地下水水质特征及其对生态健康的评价[J]. 中国地质, DOI. 11.1167.p.20200402.161.002.

Sun Q F, Sun Z A, Jia L G, et al. Characteristics of groundwater quality in Changchun New District and its evaluation on ecological health[J]. Geology in China, DOI. 11.1167.p.20200402.161.002.

[33]

Whelton A J, Dietrich A M, Burlingame G A, et al. Minerals in drinking water: Impacts on taste and importance to consumer health[J]. Water Science & Technology, 2007, 55(5): 283-291.

[34]

杨庆娟, 魏宏斌, 邹平, 等. 纳滤水的口感分析[J]. 净水技术, 2009, 28(5): 25-28. doi: 10.3969/j.issn.1009-0177.2009.05.006

Yang Q J, Wei H B, Zou P, et al. Taste analysis of drinking-water produced by NF membrane[J].Water Purification Technology, 2009, 28(5): 25-28. doi: 10.3969/j.issn.1009-0177.2009.05.006

[35]

李洁, 李红岩, 王新, 等. 应用感官指数和健康指数评价生活饮用水水质[J]. 中国给水排水, 2018, 34(23): 54-57, 63.

Li J, Li H Y, Wang X, et al. Evaluation of drinking water quality by sensory and health indices[J]. China Water & Wastewater, 2018, 34(23): 54-57, 63.

[36]

高庭苇, 彭文娟, 韩秉均, 等. 包装饮用水口感的水质影响因素和人群偏好研究[J]. 给水排水, 2021, 47(4): 6-13.

Gao T W, Peng W J, Han B J, et al. Study on the influence of water qualities and population preferences of the taste of packaged drinking water[J].Water & Wastewater Engineering, 2021, 47(4): 6-13.

[37]

李佳林, 马于曦, 卞建民, 等. 长白山地区安图县矿泉水水化学成因及水质健康功能评价[J]. 中国农村水利水电, 2021, (6): 42-48. doi: 10.3969/j.issn.1007-2284.2021.06.008

Li J L, Ma Y X, Bian J M, et al. Hydrochemical origin and water quality health function evaluation of mineral water in Antu County of Changbai Mountain area[J].China Rural Water and Hydropower, 2021, (6): 42-48. doi: 10.3969/j.issn.1007-2284.2021.06.008

相似文献(共20条)

[1]

王绣燕. 矿泉水及其分析与评价. 岩矿测试, 1987, (2): 154-160.

[2]

于扬, 王伟, 王登红, 高娟琴, 刘善宝, 袁蔺平, 于沨, 张塞. 水化学找矿法及其在大型资源基地绿色调查中的应用——以川西九龙地区地表水化学找矿为例. 岩矿测试, 2021, 40(2): 227-238. doi: 10.15898/j.cnki.11-2131/td.202004080040

[3]

马自诚. 荧光光度法测量饮用矿泉水及土壤中(有效态)痕量硼. 岩矿测试, 1987, (2): 126-128.

[4]

汪雨. 高分辨连续光源原子吸收光谱仪检测饮用矿泉水中的金属离子. 岩矿测试, 2007, 26(6): 485-489.

[5]

张保科, 王蕾, 马生凤. 电感耦合等离子体质谱法测定含气天然矿泉水中的铬. 岩矿测试, 2013, 32(4): 568-571.

[6]

黄婕, 于奭, 罗惠先, 林丹辉. 西江流域水文水化学因子对岩溶系统碳汇通量的影响分析. 岩矿测试, 2016, 35(6): 642-649. doi: 10.15898/j.cnki.11-2131/td.2016.06.011

[7]

赵凤三. 关于矿泉水中钙、镁取样问题的讨论. 岩矿测试, 1988, (1): 9-10.

[8]

吴功建, 李家熙. 硒氟的地球化学特征与人体健康. 岩矿测试, 1996, (4): 241-250.

[9]

李丽君, 王海娇, 马健生. 下辽河平原地下水中挥发性有机物的污染特征及健康风险评价. 岩矿测试, 2021, 40(6): 930-943. doi: 10.15898/j.cnki.11-2131/td.202108200105

[10]

赵庆令, 李清彩, 谢江坤, 史启朋, 陈丽娇. 鲁中南地区双村岩溶水系统地下水中化学致癌物和非致癌物的健康风险评价. 岩矿测试, 2016, 35(1): 90-97. doi: 10.15898/j.cnki.11-2131/td.2016.01.015

[11]

宋雪英, 金彩霞, 胡晓钧, 李玉双, 李卉颖, 杨继松. 太子河流域水质模糊综合评价. 岩矿测试, 2011, 30(6): 705-708.

[12]

韩彬, 林法祥, 丁宇, 陈发荣, 高伟, 李倩, 郑立. 海州湾近岸海域水质状况调查与风险评价. 岩矿测试, 2019, 38(4): 429-437. doi: 10.15898/j.cnki.11-2131/td.201806190073

[13]

马生凤, 温宏利, 巩爱华, 屈文俊, 曹亚萍. 偏硼酸锂碱熔-电感耦合等离子体发射光谱法测定硫化物矿中硅酸盐相的主成分. 岩矿测试, 2009, 28(6): 535-540.

[14]

朱锁, 苏美霞, 赵锁志, 李世宝, 王喜宽, 张青. 内蒙古乌梁素海湖泊地球化学特征与初步评价. 岩矿测试, 2008, 27(4): 263-268.

[15]

赵庆令, 李清彩, 谢江坤, 李元仲, 姬永红, 庞成宝, 万淼. 应用富集系数法和地累积指数法研究济宁南部区域土壤重金属污染特征及生态风险评价. 岩矿测试, 2015, 34(1): 129-137. doi: 10.15898/j.cnki.11-2131/td.2015.01.017

[16]

唐诗, 苏隽, 陆太进, 马永旺, 柯捷, 宋中华, 张钧, 张晓玉, 代会茹, 李海波, 张健, 吴旭旭, 刘厚祥. 化学气相沉积法再生钻石的实验室检测特征研究. 岩矿测试, 2019, 38(1): 62-70. doi: 10.15898/j.cnki.11-2131/td.201802070017

[17]

成晓梦, 孙彬彬, 贺灵, 吴超, 赵辰, 曾道明. 四川省沐川县西部地区土壤硒含量特征及影响因素. 岩矿测试, 2021, 40(6): 808-819. doi: 10.15898/j.cnki.11-2131/td.202106080072

[18]

张塞, 于扬, 王登红, 王伟, 张洪果, 岑况. 赣南离子吸附型稀土矿区土壤重金属形态分布特征及生态风险评价. 岩矿测试, 2020, 39(5): 726-738. doi: 10.15898/j.cnki.11-2131/td.201911050152

[19]

郭宗山. 用比值法指标化X光粉晶衍射低级晶系d(A)值. 岩矿测试, 1983, (2): 104-117.

[20]

俞祖根, 盛乐民. 闪锌矿中铅同位素比值精确测定时的化学分离方法. 岩矿测试, 1988, (2): 125-127.

计量
  • PDF下载量(5)
  • 文章访问量(457)
  • HTML全文浏览量(176)
  • 被引次数(0)
目录

Figures And Tables

江西兴国县潜在偏硅酸矿泉水水化学特征及水质健康功能评价

龚磊, 王新峰, 宋绵, 胡啟锋, 缪赛, 陈浩习