【引用本文】 顾涛, 朱晓华, 赵信文, 等. 广州新垦莲藕产区莲藕品质与地球化学条件的关系[J]. 岩矿测试, 2021, 40(6): 833-845. doi: 10.15898/j.cnki.11-2131/td.202109290136
GU Tao, ZHU Xiao-hua, ZHAO Xin-wen, et al. Relationship between Lotus Root Quality and Geochemical Conditions in the Xinken Lotus Root Producing Area of Guangzhou[J]. Rock and Mineral Analysis, 2021, 40(6): 833-845. doi: 10.15898/j.cnki.11-2131/td.202109290136

广州新垦莲藕产区莲藕品质与地球化学条件的关系

1. 

自然资源部生态地球化学重点实验室, 国家地质实验测试中心, 北京 100037

2. 

中国地质调查局花岗岩成岩成矿地质研究中心, 中南地质科技创新中心, 湖北 武汉 430205

3. 

中国地质大学(武汉)材料与化学学院, 湖北 武汉 430074

4. 

中南地质科技创新中心, 湖北 武汉 430205

5. 

广州市地质调查院, 广东 广州 510440

收稿日期: 2021-09-29  修回日期: 2021-11-05  接受日期: 2021-11-12

基金项目: 国家自然科学基金项目(42107485);自然资源部生态地球化学重点实验室开放基金项目(ZSDHJJ202005);中国地质调查局花岗岩成岩成矿地质研究中心开放基金课题(PMGR202019);中国地质调查局地质调查项目"广州多要素城市地质调查"(DD20190291);广州市"岭南英杰工程"人才培养项目

作者简介: 顾涛, 在读博士研究生, 高级工程师, 主要从事环境地球化学方面的研究工作。E-mail: cugyunnangt1@163.com

通信作者: 帅琴, 教授, 博士生导师, 主要从事色谱分析、原子光谱分析及其联用技术研究。E-mail: shuaiqin@cug.edu.cn

Relationship between Lotus Root Quality and Geochemical Conditions in the Xinken Lotus Root Producing Area of Guangzhou

1. 

Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources; National Research Center for Geoanalysis, Beijing 100037, China

2. 

Research Center for Petrogenesis and Mineralization of Granitoid Rocks, China Geological Survey, Central South China Innovation Center for Geosciences, Wuhan 430205, China

3. 

Faculty of Material Science and Chemistry, China University of Geosciences(Wuhan), Wuhan 430074, China

4. 

Central South China Innovation Center for Geosciences, Wuhan 430205, China

5. 

Geological Survey of Guangzhou, Guangzhou 510440, China

Corresponding author: SHUAI Qin, shuaiqin@cug.edu.cn

Received Date: 2021-09-29
Revised Date: 2021-11-05
Accepted Date: 2021-11-12

摘要:名优特农产品品质与产区环地质背景条件密切相关。广州新垦莲藕是国家地理标志产品,探讨其产区地质背景与莲藕品质的关系对于新垦莲藕的规模化种植有重要意义。本文通过系统采集新垦莲藕产地藕塘底泥、地表水、新鲜莲藕样品,采用电感耦合等离子体质谱/发射光谱法(ICP-MS/OES)等多种技术进行测试,开展品质评价研究,初步揭示了新垦莲藕品质与产区环境地球化学条件之间的相关性。研究结果表明:藕塘底泥中营养元素锰、锌、钼、钴、钒、铁均处在一等(丰富)等级,硒以适量和高硒等级为主,重金属铬、铜、汞、镍、铅、锌均低于农用地土壤污染风险筛选值;藕塘地表水中铜、锌、硒、硼、汞、镉、砷、六价铬、铅、镍等指标均满足灌溉水质要求;产出的新垦莲藕淀粉、可溶性糖、钾、磷、钙、镁、铁、锌、硒的含量较高,重金属和粗纤维含量较低;莲藕对底泥中不同元素生物富集系数平均值范围为0.0484~65.67,对磷的富集能力最强,对锗的富集能力最弱。藕塘底泥中硼与莲藕中淀粉显著正相关(p≤0.05),钙与蛋白质显著性正相关,砷与可溶性糖显著负相关。藕塘底泥中硼钴铁镁锰钒钙锗的含量较高,有利于莲藕营养组分的积累,产出高品质的莲藕。本文提出在种植过程中重视有机质、钙、氮和锗等养分的补充,关注镉和砷带来的潜在生态安全风险。

关键词: 新垦地区, 底泥, 地表水, 电感耦合等离子体质谱/发射光谱法, 地球化学条件, 莲藕品质

要点

(1) 系统采集和测试评价了新垦莲藕藕塘底泥、地表水及莲藕中的组分信息特征。

(2) 新垦莲藕生长的水土环境总体较为清洁,重金属含量较低;底泥营养元素丰富,硼钴铁镁锰钒钙锗含量高,利于莲藕营养组分的积累。

(3) 新垦莲藕对营养元素的吸收富集能力大于对重金属的吸收富集能力。

Relationship between Lotus Root Quality and Geochemical Conditions in the Xinken Lotus Root Producing Area of Guangzhou

ABSTRACT

BACKGROUND:

Environmental geochemical conditions affect the quality of famous and special agricultural products. Xinken lotus root is the national product of geographical indication. Exploring the relationship between the geological background of the production area and the quality of lotus root is of great significance to the large-scale planting of Xinken lotus root.

OBJECTIVES:

To reveal the correlation between the quality of lotus root and the environmental geochemical characteristics in the producing area.

METHODS:

Sediment, surface water and fresh lotus root in the Xinken area were systematically sampled and analyzed.

RESULTS:

The concentrations of nutrients, i.e., Mn, Zn, Mo, Co, V and Fe, in the sediment of the lotus root pond were high, in the first grade (rich) level. Selenium was mainly in proper amounts and high selenium grade. The concentrations of Cr, Cu, Hg, Ni, Pb and Zn were lower than those of the soil pollution risk threshold of agricultural land. Cu, Zn, Se, B, Hg, Cd, As, Cr(Ⅵ), Pb and Ni in surface water of the lotus pond met the requirement for irrigation water quality. The lotus root was rich in starch, soluble sugar, K, P, Ca, Mg, Fe, Zn and Se, and the contents of heavy metals and crude fiber were low. The average bioaccumulation coefficients of lotus root for different elements ranged from 0.0484 to 65.67. The enrichment ability of P was the strongest and that of Ge was the weakest. There was a significant positive correlation between B and starch in lotus root pond sediment (p ≤ 0.05), between Ca and protein, while a significant negative correlation between As and soluble sugar. The contents of B, Co, Fe, Mg, Mn, V, Ca and Ge in the sediment of the lotus pond were high, which was beneficial to the accumulation of nutrients in lotus root, and thus production of safe and high-quality lotus roots.

CONCLUSIONS:

Importance should be attached to the supplement of organic matter, Ca, N and Ge in the lotus pond during the planting process and more attention to the potential ecological security risks caused by Cd and As.

KEY WORDS: Xinkentown area, sediment, surface water, inductively coupled plasma-mass spectrometry/optical emission spectrometry, geochemical conditions, quality of lotus root

HIGHLIGHTS

(1) Chemical compositions of sediment, surface water and fresh lotus root in the Xinken area were systematically analyzed.

(2) The sediment and water environment of Xinken lotus root is generally clean, with low heavy metal contents and rich nutrient elements in sediment. The contents of B, Co, Fe, Mg, Mn, V, Ca and Ge in the sediment are high, which is beneficial to the accumulation of nutrients in lotus root.

(3) The absorption and enrichment capacity of Xinken lotus root for nutrient elements is greater than that for heavy metals.

本文参考文献

[1]

Ferretti C G. Relationship between the geology, soil assessment, and terroir of Gewürtztraminer vineyards: A case study in the dolomites of northern Italy[J].CATENA, 2019, 179: 74-84. doi: 10.1016/j.catena.2019.03.044

[2]

Zhou G H, Zhu L X, Ren T X, et al. Geochemical characteristics affecting the cultivation and quality of Longjing Tea[J].Journal of Geochemical Exploration, 1995, 55(1-3): 183-191. doi: 10.1016/0375-6742(95)00017-8

[3]

黎旭荣, 朱鑫, 张高强, 等. 广东四会优质沙糖桔产地生态地球化学特征[J]. 现代地质, 2012, 26(1): 125-130. doi: 10.3969/j.issn.1000-8527.2012.01.013

Li X R, Zhu X, Zhang G Q, et al. Eco-geochemical characteristics of the high-quality Shatang Citrus producing area in Sihui, Guangdong[J].Geoscience, 2012, 26(1): 125-130. doi: 10.3969/j.issn.1000-8527.2012.01.013

[4]

Amarante C V T D, de Fátima Ferreira Da Rosa E, Albuquerque J A, et al. Soil attributes and fruit quality in organic and conventional apple production systems in southern Brazil[J]. Artigo Científico, 2015, 46(1): 99-109.

[5]

Kumssa D B, Joy E J, Young S D, et al. Variation in the mineral element concentration of Moringa oleifera Lam, and M.stenopetala (Bak.f.) Cuf.: Role in human nutrition[J].PLOS ONE, 2017, 12(4): e175503.

[6]

严洪泽, 周国华, 孙彬彬, 等. 福建龙海杨梅产地元素地球化学特征[J]. 中国地质, 2018, 45(6): 1155-1166.

Yan H Z, Zhou G H, Sun B B, et al. Geochemical characteristics of the bayberry producing area in Longhai, Fujian[J]. Geology in China, 2018, 45(6): 1155-1166.

[7]

王卫星, 曹淑萍, 李攻科, 等. 天津盘山磨盘柿子品质分析及其产地土壤地球化学特征[J]. 物探与化探, 2019, 43(5): 1131-1137.

Wang W X, Cao S P, Li G K, et al. Chemical composition analysis and soil geochemical characteristics of Mopan persimmon in Panshan, Tianjin[J]. Geophysical and Geochemical Exploration, 2019, 43(5): 1131-1137.

[8]

任娜欧, 王数, 张凤荣, 等. 北京妙峰山优质玫瑰生长的农业地质背景[J]. 中国农业大学学报, 2018, 23(7): 107-115.

Ren N O, Wang S, Zhang F R, et al. Study on the agricultural geological background of high quality rose growth in Miaofeng Mountain in Beijing[J]. Journal of China Agricultural University, 2018, 23(7): 107-115.

[9]

王金龙, 孙彬彬, 周国华, 等. 漳州水仙花产地生态地球化学特征[J]. 桂林理工大学学报, 2018, 38(3): 420-428. doi: 10.3969/j.issn.1674-9057.2018.03.007

Wang J L, Sun B B, Zhou G H, et al. Ecological and geochemical characteristics of Zhangzhou narcissus planting area[J].Journal of Guilin University of Technology, 2018, 38(3): 420-428. doi: 10.3969/j.issn.1674-9057.2018.03.007

[10]

孙厚云, 孙晓明, 贾凤超, 等. 河北承德锗元素生态地球化学特征及其与道地药材黄芩适生关系[J]. 中国地质, 2020, 47(6): 1646-1667.

Sun H Y, Sun X M, Jia F C, et al. The eco-geochemical characteristics of germanium and its relationship with the genuine medicinal material scutellaria baicalensis in Chengde, Hebei Province[J]. Geology in China, 2020, 47(6): 1646-1667.

[11]

孙厚云, 卫晓锋, 孙晓明, 等. 承德杏仁产区关键带基岩-土壤-作物果实BRSPC系统元素迁聚特征[J]. 地球科学, 2021, 46(7): 2621-2645.

Sun H Y, Wei X F, Sun X M, et al. Element migration and accumulation characteristics of bedrock-regolith-soil-fruit plant continuum of the earth's critical zone in Chengde almond producing area[J]. Earth Science, 2021, 46(7): 2621-2645.

[12]

Zhu F. Structures, properties, and applications of lotus starches[J].Food Hydrocolloids, 2017, 63: 332-348. doi: 10.1016/j.foodhyd.2016.08.034

[13]

Zhang Y, Lu X, Zeng S, et al. Nutritional composition, physiological functions and processing of lotus (Nelumbo nucifera Gaertn.) seeds: A review[J].Phytochemistry Reviews, 2015, 14(3): 321-334. doi: 10.1007/s11101-015-9401-9

[14]

罗满, 张灿明, 李有志, 等. 洞庭湖区莲藕重金属污染特征[J]. 农业资源与环境学报, 2016, 33(6): 554-559.

Luo M, Zhang C M, Li Y Z, et al. Characteristics of heavy metals contamination in lotus root in the Dongting Lake area, China[J]. Journal of Agricultural Resources and Environment, 2016, 33(6): 554-559.

[15]

张文胜, 吴永中, 龙伟, 等. 广州新垦莲藕品种应用现状、问题与对策[J]. 长江蔬菜, 2016, (3): 13-15.

Zhang W S, Wu Y Z, Long W, et al. Application status, problems and countermeasures of Xinken lotus root varieties in Guangzhou[J]. Journal of Changjiang Vegetables, 2016, (3): 13-15.

[16]

张文胜. 风味独特的新垦莲藕[J]. 长江蔬菜, 2016, (12): 20-21.

Zhang W S. Xinken lotus root with unique flavor[J]. Journal of Changjiang Vegetables, 2016, (12): 20-21.

[17]

Rai G K, Bhat B A, Mushtaq M, et al. Insights into decontamination of soils by phytoremediation: A detailed account on heavy metal toxicity and mitigation strategies[J]. Physiologia Plantarum, 2021, : 1-18.

[18]

Mansoor S, Kour N, Manhas S, et al. Biochar as a tool for effective management of drought and heavy metal toxicity[J].Chemosphere, 2021, 271: 129458. doi: 10.1016/j.chemosphere.2020.129458

[19]

Rehman A U, Nazir S, Irshad R, et al. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles[J].Journal of Molecular Liquids, 2021, 321: 114455. doi: 10.1016/j.molliq.2020.114455

[20]

窦磊, 杜海燕, 游远航, 等. 珠江三角洲经济区生态地球化学评价[J]. 现代地质, 2014, 28(5): 915-927. doi: 10.3969/j.issn.1000-8527.2014.05.005

Dou L, Du H Y, You Y H, et al. Eco-geochemical survey and assessment in Pearl River Delta Economic Zone, Guangdong Province, China[J].Geoscience, 2014, 28(5): 915-927. doi: 10.3969/j.issn.1000-8527.2014.05.005

[21]

杜海燕, 赖启宏, 周国华, 等. 广东省珠江三角洲经济区区域生态地球化学评价报告[R]. 2011.

Du H Y, Lai Q H, Zhou G H, et al. Report on eco-geochemical survey and assessment in Pearl River Delta Economic Zone, Guangdong Province[R]. 2011.

[22]

赵亚楠, 周玉蓉, 王红梅, 等. 宁夏东部荒漠草原灌丛引入下土壤水分空间异质性[J]. 应用生态学报, 2018, 29(11): 3577-3586.

Zhao Y N, Zhou Y R, Wang H M, et al. Spatial heterogeneity of soil water content under introduced shrub (Caragana korshinskii) in desert grassland of the eastern Ningxia, China[J]. Chinese Journal of Applied Ecology, 2018, 29(11): 3577-3586.

[23]

崔昆, 赵庚星, 王卓然, 等. 黄河三角洲夏季典型田块土壤盐分的多尺度空间变异[J]. 应用生态学报, 2020, 31(5): 1451-1458.

Cui K, Zhao G X, Wang Z R, et al. Multi-scale spatial variability of soil salinity in typical fields of the Yellow River Delta in summer[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1451-1458.

[24]

刘子宁, 窦磊, 张伟, 等. 珠江三角洲第四纪沉积物Cd元素的分布特征及成因[J]. 地质通报, 2012, 31(01): 172-180.

Liu Z N, Dou L, Zhang W, et al. Distribution and origin of cadmium in the Quaternary sediments of the Pearl River Delta Plain, Guangdong Province, southern China[J]. Geological Bulletin of China, 2012, 31(01): 172-180.

[25]

陈丹青, 谢志宜, 张雅静, 等. 基于PCA/APCS和地统计学的广州市土壤重金属来源解析[J]. 生态环境学报, 2016, 25(6): 1014-1022.

Chen D Q, Xie Z Y, Zhang Y J, et al. Source apportionment of soil heavy metals in Guangzhou based on the PCA/APCS model and geostatistics[J]. Ecology and Environmental Sciences, 2016, 25(6): 1014-1022.

[26]

徐慧秋, 黄银华, 吴志峰, 等. 广州市农业土壤As和Cd污染及其对景观异质性的多尺度响应[J]. 应用生态学报, 2016, 27(10): 3283-3289.

Xu H Q, Huang Y H, Wu Z F, et al. Agricultural soil contamination from As and Cd and its responses to landscape heterogeneity at multiple scales in Guangzhou, China[J]. Chinese Journal of Applied Ecology, 2016, 27(10): 3283-3289.

[27]

涂静. 莲藕品质评价及其冻结特性研究[D]. 无锡: 江南大学, 2014.

Tu J. Study on the quality evaluation and freezing characteristics of lotus root[D]. Wuxi: Jiangnan University, 2014.

[28]

高培培, 肖冰, 刘文菊, 等. 莲藕中重金属含量特征及其健康风险评价[J]. 环境化学, 2020, 39(2): 362-370.

Gao P P, Xiao B, Liu W J, et al. Analysis and health risk assessment of heavy metal in lotus root[J]. Environmental Chemistry, 2020, 39(2): 362-370.

[29]

Xiong C, Zhang Y, Xu X, et al. Lotus roots accumulate heavy metals independently from soil in main production regions of China[J]. Scientia Horticulturae, 2013, 164: 295-302.

[30]

程婷婷, 惠小涵, 尚欣欣, 等. 10个产地莲藕营养成分分析与品质综合评价[J]. 食品工业科技, 2021, 42(8): 320-325.

Cheng T T, Hui X H, Shang X X, et al. Nutrient composition analysis and quality comprehensive evaluation of lotus root in 10 producing areas[J]. Science and Technology of Food Industry, 2021, 42(8): 320-325.

[31]

杨月欣. 中国食物成分表(标准版)[M] . 北京: 北京大学医学出版社, 2018: 1-363.

Yang Y X. China food composition tables (The Standard Edition)[M] . Beijing: Peking University Medical Press, 2018: 1-363.
[32]

马宏宏, 彭敏, 刘飞, 等. 广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1): 449-459.

Ma H H, Peng M, Liu F, et al. Bioavailability, translocation, and accumulation characteristics of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi, China[J]. Environment Science, 2020, 41(1): 449-459.

[33]

Ng C C, Boyce A N, Abas M R, et al. Phytoassessment of vetiver grass enhanced with EDTA soil amendment grown in single and mixed heavy metal-contaminated soil[J].Environmental Monitoring and Assessment, 2019, 191(434): 1-16. doi: 10.1007%2Fs10661-019-7573-2

[34]

阳国运, 唐裴颖, 张洁, 等. 电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗[J]. 岩矿测试, 2019, 38(2): 154-159.

Yang G Y, Tang P Y, Zhang J, et al. Determination of boron iodine tin and germanium in geochemical samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 154-159.

[35]

Al-Mayahi A M W. Effect of calcium and boron on growth and development of callus and shoot regeneration of date palm 'Barhee'[J]. Canadian Journal of Plant Science, 2020, 100(4): 357-364.

[36]

Wang Q, Zhang W, Xiao H, et al. Involvement of boron transporter BOR1 in growth under low boron and high nitrate conditions in Arabidopsis thaliana[J]. Physiologia Plantarum, 2021, 171(4): 703-713.

[37]

Burger A, Lichtscheidl I. Stable and radioactive cesium: A review about distribution in the environment, uptake and translocation in plants, plant reactions and plants'potential for bioremediation[J].Science of The Total Environment, 2018, 618: 1459-1485.

[38]

Tang R, Zhao F, Yang Y, et al. A calcium signalling network activates vacuolar K+ remobilization to enable plant adaptation to low-K environments[J]. Nature Plants, 2020, 6(4): 384-393.

[39]

Nakamura T, Shimada Y, Takeda T, et al. Organogermanium compound, Ge-132, forms complexes with adrenaline, ATP and other physiological cis-diol compounds[J]. Future Medicinal Chemistry, 2015, 7(10): 1233-1246.

[40]

刘艳, 侯龙鱼, 赵广亮, 等. 锗对植物影响的研究进展[J]. 中国生态农业学报, 2015, 23(8): 931-937.

Liu Y, Hou L Y, Zhao G L, et al. Mechanism and application of germanium in plant growth[J]. Chinese Journal of Eco-Agriculture, 2015, 23(8): 931-937.

相似文献(共20条)

[1]

饶竹, 何淼. 圆盘固相萃取富集-气相色谱法测定地表水中有机氯和有机磷农药. 岩矿测试, 2008, 27(1): 12-16.

[2]

贾利. 巯基棉分离富集—感耦等离子体发射光谱法测定河流湖泊底泥中总汞. 岩矿测试, 1995, (1): 69-71.

[3]

高娟琴, 于扬, 王登红, 王伟, 代鸿章, 于沨, 秦燕. 新疆阿勒泰地区地表水体氢氧同位素组成及空间分布特征. 岩矿测试, 2021, 40(3): 397-407. doi: 10.15898/j.cnki.11-2131/td.202101140007

[4]

李海燕, 谭丕功, 房贤文, 张婷婷, 于彦彬. 高效液相色谱法同时测定地表水中四种醛类化合物. 岩矿测试, 2012, 31(4): 672-676.

[5]

罗艳, 杨侨. 混合酸比例对ICP-MS/OES测定地球化学样品中多元素的影响. 岩矿测试, 2017, 36(6): 587-593. doi: 10.15898/j.cnki.11-2131/td.201704130055

[6]

, 陈明, 魏连伟. 永定河上游水体与底泥中污染物的分布规律. 岩矿测试, 2001, (2): 131-135141.

[7]

成晓梦, 孙彬彬, 贺灵, 吴超, 赵辰, 曾道明. 四川省沐川县西部地区土壤硒含量特征及影响因素. 岩矿测试, 2021, 40(6): 808-819. doi: 10.15898/j.cnki.11-2131/td.202106080072

[8]

李海萍, 赵秋香, 何光涛, 莫书伟, 曾宇斌. 地表水和地下水水质分析前处理问题探讨. 岩矿测试, 2010, 29(5): 613-616.

[9]

王玉功, 高永宏, 王建波, 陈月源. 紫外可见分光光度法测定地表水和地下水的高锰酸盐指数. 岩矿测试, 2010, 29(5): 617-620.

[10]

蔡波, 郝立波, 陆继龙, 孙素梅, 白荣杰, 王大勇. 第二松花江中下游河段底泥中多环芳烃的初步研究. 岩矿测试, 2007, 26(4): 325-327.

[11]

房贤文, 谭培功, 单红, 董新春, 张婷婷. 气相色谱法测定地表水中醛酮类化合物. 岩矿测试, 2007, 26(5): 363-366.

[12]

黄毅, 何淼, 饶竹, 苏劲. GDX-502树脂富集高效液相色谱法测定地表水中酚类化合物. 岩矿测试, 2007, 26(2): 101-104.

[13]

张扬(珀金埃尔默仪器上海有限公司). 电感耦合等离子体发射光谱法检测水、污水、废水、底泥和土壤中微量元素. 岩矿测试, 2009, 28(5): 文后II-.

[14]

阳国运, 唐裴颖. 电感耦合等离子体发射光谱法测定地表水和地下水中的硫酸根. 岩矿测试, 2009, 28(2): 176-178.

[15]

汪君, 王頔, 邓长生, 张建梅, 羊鸫, 王斌堂, 朱素霞. 电感耦合等离子体发射光谱法测定地球化学样品中的钍. 岩矿测试, 2014, 33(4): 501-505.

[16]

于扬, 王伟, 王登红, 高娟琴, 刘善宝, 袁蔺平, 于沨, 张塞. 水化学找矿法及其在大型资源基地绿色调查中的应用——以川西九龙地区地表水化学找矿为例. 岩矿测试, 2021, 40(2): 227-238. doi: 10.15898/j.cnki.11-2131/td.202004080040

[17]

文春华, 罗小亚, 李胜苗, 李建康. 应用X射线荧光光谱-电感耦合等离子体质谱法研究湖南传梓源地区稀有金属矿床伟晶岩地球化学特征. 岩矿测试, 2015, 34(3): 359-365. doi: 10.15898/j.cnki.11-2131/td.2015.03.017

[18]

苏晓云, 刘善宝, 高虎, 王成辉, 刘战庆, 胡正华, 刘建光, 陈国华, 万浩章. 基于电感耦合等离子体质谱/光谱技术研究朱溪钨铜矿床原生晕地球化学特征. 岩矿测试, 2015, 34(2): 252-260. doi: 10.15898/j.cnki.11-2131/td.2015.02.017

[19]

胡德新, 武素茹, 刘跃勇, 王虹, 王向东, 李权斌, 谷松海. 改进BCR法-电感耦合等离子体发射光谱法测定矿产品堆场土壤中镉砷铅的化学形态. 岩矿测试, 2014, 33(3): 374-378.

[20]

熊英, 董亚妮, 裴若会, 崔长征. 电感耦合等离子体发射光谱法应用于锑矿石化学物相分析. 岩矿测试, 2019, 38(5): 497-502. doi: 10.15898/j.cnki.11-2131/td.201809010131

计量
  • PDF下载量(6)
  • 文章访问量(430)
  • HTML全文浏览量(177)
  • 被引次数(0)
目录

Figures And Tables

广州新垦莲藕产区莲藕品质与地球化学条件的关系

顾涛, 朱晓华, 赵信文, 江拓, 邱啸飞, 郑小战, 帅琴