【引用本文】 吴超, 孙彬彬, 陈海杰, 等. 应用梯度扩散薄膜技术评价天然富硒土壤中硒的生物有效性[J]. 岩矿测试, 2022, 41(1): 66-79. doi: 10.15898/j.cnki.11-2131/td.202109290134
WU Chao, SUN Bin-bin, CHEN Hai-jie, et al. Assessment of Selenium Bioavailability in Natural Selenium-rich Soil Based on Diffusive Gradients in Thin Films[J]. Rock and Mineral Analysis, 2022, 41(1): 66-79. doi: 10.15898/j.cnki.11-2131/td.202109290134

应用梯度扩散薄膜技术评价天然富硒土壤中硒的生物有效性

1. 

自然资源部地球化学探测重点实验室, 中国地质科学院地球物理地球化学勘查研究所, 河北 廊坊 065000

2. 

联合国教科文组织全球尺度地球化学国际研究中心, 河北 廊坊 065000

收稿日期: 2021-09-29  修回日期: 2021-11-02  接受日期: 2021-11-11

基金项目: 中国地质科学院地球物理地球化学勘查研究所中央财政科研项目结余资金项目(JY201905)

作者简介: 吴超, 硕士, 工程师, 主要研究方向为土地质量地球化学调查。E-mail: wuchao@mail.cgs.gov.cn

通信作者: 孙彬彬, 博士, 高级工程师, 主要研究方向为土地质量地球化学调查。E-mail: sbinbin@mail.cgs.gov.cn

Assessment of Selenium Bioavailability in Natural Selenium-rich Soil Based on Diffusive Gradients in Thin Films

1. 

Key Laboratory of Geochemical Exploration, Ministry of Natural Resources; Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China

2. 

UNESCO International Center on Global-scale Geochemistry, Langfang 065000, China

Corresponding author: SUN Bin-bin, sbinbin@mail.cgs.gov.cn

Received Date: 2021-09-29
Revised Date: 2021-11-02
Accepted Date: 2021-11-11

摘要:有效硒是评价土壤中硒对植物供给能力的重要指标,中国目前尚无测定土壤有效硒的统一方法。化学提取法、土壤溶液法常用于测定土壤有效硒含量,但存在缺乏普遍适用提取剂类型、目标态提取不完全和对非目标态溶解等问题。梯度扩散薄膜(DGT)技术是一种基于解离、扩散动力学的有效态测定方法,已有学者将其应用于土壤有效硒的测定并取得良好效果,但是否适用于天然富硒土壤中硒生物有效性评价尚不明确。为探明梯度扩散薄膜技术评价天然富硒土壤中硒生物有效性的可行性,本文以浙江省上墅乡和汾口镇分布的天然富硒土壤为研究对象,实验应用化学提取法、土壤溶液法和DGT技术[包括Fe-oxide(水铁矿型)DGT、Zr-oxide(水合氢氧化锆型)DGT]评价土壤中硒的生物有效性。结果表明:①Fe-oxide DGT测得的有效硒平均含量为0.17±0.076μg/L,Zr-oxide DGT测得的有效硒平均含量为0.20±0.13μg/L。两种类型DGT测得有效硒含量差异不大,但由于Zr-oxide DGT对Se4+具有专性吸附特征,导致Zr-oxide DGT无法有效反映植物体内硒含量水平。对于检测土壤硒生物有效量,Fe-oxide DGT要优于Zr-oxide DGT;②植物体内硒含量Cplant-Se与三种方法测定的有效硒含量均呈显著正相关,但Cplant-Se与Fe-oxide DGT测定的有效硒含量相关系数(r=0.705)大于其他两种方法;③基于DGT技术计算得出的R值(土壤颗粒向土壤溶液补充硒的能力)和Kd值(土壤固相与液相之间的分配系数)表明上墅研究区相较于汾口研究区土壤中硒具有更强的迁移性,但其土壤固相向土壤溶液补充硒离子的速率小于汾口研究区。综上认为,对于评价天然富硒土壤中硒生物有效性而言,DGT方法优于化学提取法和土壤溶液法,在测试性能和反映土壤动力学过程信息方面更具优势。

关键词: 化学提取法, DGT技术, 土壤溶液法, , 生物有效性, 天然富硒土壤

要点

(1) 明确了梯度扩散薄膜(DGT)技术可以有效评价天然富硒土壤中硒生物有效性。

(2) DGT技术测定土壤有效硒的效果优于化学提取法和土壤溶液法。

(3) DGT技术相较于化学提取法和土壤溶液法能够反映土壤动力学过程信息。

Assessment of Selenium Bioavailability in Natural Selenium-rich Soil Based on Diffusive Gradients in Thin Films

ABSTRACT

BACKGROUND:

Available selenium is an important index to evaluate the supply capacity of selenium from the soil to plants. Unfortunately, there is no general method for the determination of available selenium in soil in China. Chemical extraction and soil solution methods are commonly used to evaluate bioavailability of selenium. Furthermore, there are problems such as the lack of universally applicable extractant types, incomplete extraction of target states, and dissolution of non-target states. The diffusive gradient in thin-films (DGT) technique is a method based on dissociation and diffusion kinetics which has been successfully used to assess the bioavailability of selenium. However, it is not clear whether the DGT technique can be used in natural selenium-rich soil.

OBJECTIVES:

To investigate the feasibility of the DGT technique to evaluate the bioavailability of selenium in natural selenium-rich soil.

METHODS:

Natural selenium-rich soils from Shangshu and Fenkou in Zhejiang Province were chosen as the research objects. Fe-oxide DGT, Zr-oxide DGT, chemical extraction, and soil solution methods were used to evaluate selenium bioavailability.

RESULTS:

(1) The average of available selenium measured by Fe-oxide DGT was 0.17±0.076μg/L, whereas the average of available selenium measured by Zr-oxide DGT was 0.20±0.13μg/L. Zr-oxide DGT cannot be used effectively to reflect the content of selenium in plants due to the specific adsorption characteristics to Se4+. Fe-oxide DGT was suitable for the bioavailability evaluation of selenium in soil rather than Zr-oxide DGT. (2) There was a significant positive correlation between the selenium content in plants (Cplant-Se) and the available selenium content determined by the three methods. The correlation between available Se by Fe-oxide DGT and Se concentration in plants (r=0.705) was greater than the chemical extraction method and soil solution method. (3) The Kd value and R value calculated from DGT and soil solution methods indicated that the soil of the Shangshu area had stronger selenium mobility than the Fenkou area, but the rate of Se supply from the soil solid phase to the soil solution was less than the Fenkou area.

CONCLUSIONS:

DGT is more suitable for evaluating selenium bioavailability compared with chemical extraction and soil solution methods because it has more advantages in testing performance and reflecting the information of soil dynamics process.

KEY WORDS: chemical extraction methods, diffusive gradients in thin films technique, soil solution method, selenium, bioavailability, natural selenium-rich soil

HIGHLIGHTS

(1) The diffusive gradient in thin-films (DGT) technique can be used to efficiently evaluate selenium bioavailability in natural selenium-rich soil.

(2) The DGT technique is better than chemical extraction and soil solution methods in evaluating selenium bioavailability.

(3) The DGT technique can be used to reflect the information of the soil dynamics process when compared with chemical extraction and soil solution methods.

本文参考文献

[1]

周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 31(3): 319-336.

Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 31(3): 319-336.

[2]

成晓梦, 马荣荣, 彭敏, 等. 中国大宗农作物及根系土中硒的含量特征与富硒土壤标准建议[J]. 物探与化探, 2019, 43(6): 1367-1372.

Cheng X M, Ma R R, Peng M, et al. Characteristics of selenium in crops and roots in China and recom-mendations selenium-enriched soil standards[J]. Geophysical and Geochemical Exploration, 2019, 43(6): 1367-1372.

[3]

Dinh Q T, Cui Z W, Huang J, et al. Selenium distribution in the Chinese environment and its relationship with human health: A review[J].Environment International, 2018, 112: 294-309. doi: 10.1016/j.envint.2017.12.035

[4]

周国华. 土壤重金属生物有效性研究进展[J]. 物探与化探, 2014, 38(6): 1097-1106.

Zhou G H. Recent progress in the study of heavy metal bioavailability in soil[J]. Geophysical and Geochemical Exploration, 2014, 38(6): 1097-1106.

[5]

梁东丽, 彭琴, 崔泽玮, 等. 土壤硒的形态转化及其对有效性的影响研究进展[J]. 生物技术进展, 2017, 7(5): 374-380.

Liang D L, Peng Q, Cui Z W, et al. Progress on selenium bioavailibility and influential factors in soil[J]. Current Biotechnology, 2017, 7(5): 374-380.

[6]

Menzies N W, Donn M J, Kopittke P M, et al. Evaluation of extractants for estimation of the phyto available trace metals in soils[J].Environmental Pollution, 2007, 145(1): 121-130. doi: 10.1016/j.envpol.2006.03.021

[7]

Tian Y, Wang X, Luo J, et al. Evaluation of holistic approaches to predicting the concentrations of metals in field-cultivated rice[J]. Environmental Science & Technology, 2008, 42(20): 7649-7654.

[8]

Luo J, Zhang H, Zhao F J, et al. Distinguishing diffusional and plant control of Cd and Ni uptake by hyperaccumulator and nonhyperaccumulator plants[J].Environmental Science & Technology, 2010, 4(4): 6636-6641.

[9]

Luo J, Zhang H, Santner J, et al. Performance characteristics of diffusive gradients in thin films equipped with a binding gel layer containing precipitated ferrihydrite for measuring arsenic(Ⅴ), Selenium(Ⅵ), vanadium(Ⅴ), and antimony(Ⅴ)[J].Analytical Chemistry, 2010, 82(21): 8903-8909. doi: 10.1021/ac101676w

[10]

Davison W, Zhang H. Progress in understanding the use of diffusive gradients in thin films(DGT)-back to basics[J].Environment Chemistry, 2012, 9(1): 1-13. doi: 10.1071/EN11084

[11]

Zhang H, Davison W. Use of diffusive gradients in thin-films for studies of chemical speciation and bioavailability[J].Environmental Chemistry, 2015, 12(2): 85-101. doi: 10.1071/EN14105

[12]

Wang M K, Cui Z W, Xue M Y, et al. Assessing the uptake of selenium from naturally enriched soils by maize (Zea mays L.) using diffusive gradients in thin-films technique (DGT) and traditional extractions[J].Science of the Total Environment, 2009, 689: 1-9.

[13]

Peng Q, Wang M K, Cui Z W, et al. Assessment of bio-availability of selenium in different plant-soil systems by diffusive gradients in thin films (DGT)[J].Environment Pollution, 2017, 225: 637-643. doi: 10.1016/j.envpol.2017.03.036

[14]

Peng Q, Li J, Wang D, et al. Effects of ageing on bio-availability of selenium in soils assessed by diffusive gradients in thin-films and sequential extraction[J].Plant Soil, 2019, 436: 159-171. doi: 10.1007/s11104-018-03920-y

[15]

赵万伏, 宋垠先, 管冬兴, 等. 典型黑色岩系分布区土壤重金属污染与生物有效性研究[J]. 农业环境科学学报, 2018, 37(7): 1332-1341.

Zhao W F, Song Y X, Guan D X, et al. Pollution status and bioavailability of heavy metals in soils of a typical black shale area[J]. Journal of Agro-Environment Science, 2018, 37(7): 1332-1341.

[16]

宋明义. 浙西地区下寒武统黑色岩系中硒与重金属的表生地球化学及环境效应[D]. 合肥: 合肥工业大学, 2009: 14-15.

Song M Y. Supergenic geochemistry and environmental effects of selenium and heavy metals in the lower Cambrian black series of western Zhejiang Province, China[D]. Hefei: Hefei University of Technology, 2009: 14-15.

[17]

Ding S, Xu D, Wang Y, et al. Simultaneous measurements of eight oxyanions using high-capacity diffusive gradients in thin films (Zr-oxide DGT) with a high-efficiency elution procedure[J]. Environmental Science & Technology, 2016, 50(14): 7572-7580.

[18]

陈海杰, 马娜, 陈卫明, 等. 抑制植物样品消解过程中硒挥发的方法[J]. 分析化学报告, 2020, 48(9): 1268-1272.

Chen H J, Ma N, Chen W M, et al. A method for suppressing volatile loss of selenium in digestion of plant samples[J]. Chinese Journal of Analytical Chemistry, 2020, 48(9): 1268-1272.

[19]

罗军, 王晓蓉, 张昊, 等. 梯度扩散薄膜技术(DGT)的理论及其在环境中的应用Ⅰ: 工作原理、特性与在土壤中的应用[J]. 农业环境科学学报, 2011, 30(2): 205-213.

Luo J, Wang X R, Zhang H, et al. Theory and application of diffusive gradients in thin films in soils[J]. Journal of Agro-Environment Science, 2011, 30(2): 205-213.

[20]

戴高乐, 侯青叶, 杨忠芳, 等. 洞庭湖平原土壤铅活动性影响因素研究[J]. 现代地质, 2019, 33(4): 783-793.

Dai G L, Hou Q Y, Yang Z F, et al. Factors affecting mobility of lead in the soils of the Dongting Lake Plain, China[J]. Geoscience, 2019, 33(4): 783-793.

[21]

马宏宏, 彭敏, 刘飞, 等. 广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1): 449-459.

Ma H H, Peng M, Liu F, et al. Bioavailability, translocation, and accumulation characteristic of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi, China[J]. Environmental Science, 2020, 41(1): 449-459.

[22]

陈静, 孙琴, 姚羽, 等. DGT和传统化学方法比较研究复合污染土壤中Cd的生物有效性[J]. 环境科学研究, 2014, 27(10): 1172-1179.

Chen J, Sun Q, Yao Y, et al. Comparison of DGT technique with traditional method for evaluating cadmium bioavailability in soils with combined pollution[J]. Research of Environmental Sciences, 2014, 27(10): 1172-1179.

[23]

吴雄平, 鲍俊丹, 伊田, 等. 石灰性土壤有效硒浸提剂和浸提条件研究[J]. 农业环境科学学报, 2009, 28(5): 931-936. doi: 10.3321/j.issn:1672-2043.2009.05.012

Wu X P, Bao J D, Yi T, et al. Extractants and optimum extracting conditions of soil available selenium in calcareous soil[J].Journal of Agro-Environment Science, 2009, 28(5): 931-936. doi: 10.3321/j.issn:1672-2043.2009.05.012

[24]

耿建梅, 王文斌, 罗丹, 等. 不同浸提剂对海南稻田土壤有效硒浸提效果对比[J]. 土壤, 2010, 42(4): 624-629.

Geng J M, Wang W B, Luo D, et al. Comparative studies on effects of several extractants on available selenium of paddy soils in Hainan[J]. Soils, 2010, 42(4): 624-629.

[25]

谢薇, 杨耀栋, 管桂芹, 等. 四种浸提剂对果园与菜地土壤有效硒浸提效果的对比研究[J]. 岩矿测试, 2020, 39(3): 434-441.

Xie W, Yang Y D, Jian G Q, et al. A comparative study of four extractants on the extraction of available selenium in vegetable and orchard soils[J]. Rock and Mineral Analysis, 2020, 39(3): 434-441.

[26]

张艳玲, 潘根兴, 胡秋辉, 等. 江苏省几种低硒土壤中硒的形态分布及生物有效性[J]. 植物营养与肥料学报, 2002, 8(3): 355-359. doi: 10.3321/j.issn:1008-505X.2002.03.018

Zhang Y L, Pan G X, Hu Q H, et al. Selenium fractionation and bio-availabiliyt in some low-Se soils of central Jiangsu Province[J].Plant Nutrition and Fertilizer Science, 2002, 8(3): 355-359. doi: 10.3321/j.issn:1008-505X.2002.03.018

[27]

Dillon K S, Rani N, Dillon S K, et al. Evaluation of different extractants for the estimation of bioavailable selenium in seleniferous soils of northwest India[J].Soil Research, 2005, 43(5): 639-645. doi: 10.1071/SR04166

[28]

Wang J, Bai L, Zeng X, et al. Assessment of arsenic availability in soils using the diffusive gradients in thin films(DGT) technique-A comparison study of DGT and classic extraction methods[J]. Environmental Science-Processess & Impacts, 2014, 16(10): 2355-2361.

[29]

Bade R, Oh S, Shin W S, et al. Diffusive gradients in thin films (DGT) for the prediction of bioavailability of heavy metals in contaminated soils to earthworm (Eisenia foetida) and oral bioavailable concentrations[J].Science of the Total Environment, 2012, 416(2): 127-136.

[30]

彭琴. 基于梯度扩散薄膜技术评价土壤硒的生物有效性[D]. 杨凌: 西北农林科技大学, 2017: 19-21.

Peng Q. Assessment of selenium bioavailability in soils based on diffusion gradients in thin films technique[D]. Yangling: Northwest A & F University, 2017: 19-21.

[31]

伊芹, 程皝, 尚文郁, 等. 土壤硒的存在特征及分析测试技术研究进展[J]. 岩矿测试, 2021, 40(1): 461-475.

Yi Q, Cheng H, Shang W Y, et al. Review on characteristics of selenium in soil and related analytical techniques[J]. Rock and Mineral Analysis, 2021, 40(1): 461-475.

[32]

Cartes P, Gianfreda L, Mora M L, et al. Uptake of selenium and its antioxidant activity in ryegrass when applied as selenate and selenite forms[J].Plant and Soil, 2005, 276(1-2): 359-367. doi: 10.1007/s11104-005-5691-9

[33]

Zhao C, Ren J, Xue C, et al. Study on the relationship between soil selenium and plant selenium uptake[J].Plant and Soil, 2005, 277(1-2): 197-206. doi: 10.1007/s11104-005-7011-9

[34]

Pezzarossa B, Petruzzelli G, Petacco F, et al. Absorption of selenium by Lactuca sativa as affected by carboxymethylcellulose[J].Chemosphere, 2007, 67: 322-329. doi: 10.1016/j.chemosphere.2006.09.073

[35]

Mason S, Mcneill A, Mclaughlin M J, et al. Prediction of wheat response to an application of phosphorus under field conditions using diffusive gradients in thin-films (DGT) and extraction methods[J].Plant Soil, 2010, 337(1-2): 243-258. doi: 10.1007/s11104-010-0521-0

[36]

Nolan A L, Zhang H, Mclaughlin M J, et al. Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques[J]. Journal of Environmental Quality, 2005, 34(14): 496-507.

[37]

宋宁宁, 王芳丽, 沈跃, 等. 梯度薄膜扩散技术(DGT)与传统化学方法评估黑麦草吸收Cd的对比[J]. 环境化学, 2012, 31(12): 1960-1967.

Song N N, Wang F L, Shen Y, et al. Comparison of the method of diffusive gradients in thin films with traditional chemical extraction techniques for evaluating cadmium bioavailability in ryegrass[J]. Environmental Chemistry, 2012, 31(12): 1960-1967.

[38]

侯青叶,杨忠芳,余涛. 中国土壤地球化学参数[M] . 北京: 地质出版社, 2020: 2621

Hou Q Y,Yang Z F,Yu T. Geochmical parameters of soils in China[M] . Beijing: Geological Publishing House, 2020: 2621
[39]

柳云龙, 章立佳, 韩晓非, 等. 上海城市样带土壤重金属空间变异特征及污染评价[J]. 环境科学, 2012, 33(2): 599-605.

Liu Y L, Zhang L J, Han X F, et al. Spatial variability and evaluation of soil heavy metal contamination in the urban-transect of Shanghai[J]. Environmental Science, 2012, 33(2): 599-605.

[40]

杨奎, 李湘凌, 张敬雅, 等. 安徽庐江潜在富硒土壤硒生物有效性及其影响因素[J]. 环境科学研究, 2018, 31(4): 715-724.

Yang K, Li X L, Zhang J Y, et al. Selenium bioavailability and influential factors in potentially selenium enriched soils in Lujiang County, Anhui Province[J]. Research of Environmental Sciences, 2018, 31(4): 715-724.

[41]

王潇, 张震, 朱江, 等. 青阳县富硒土壤中硒的形态与水稻富硒的相关性研究[J]. 地球科学与环境, 2019, 47(3): 336-344.

Wang X, Zhang Z, Zhu J, et al. Study of correlation between rice selenium and status of selenium in selenium-rich soil in Qingyang County[J]. Earth and Environment, 2019, 47(3): 336-344.

[42]

樊俊, 王瑞, 胡红青, 等. 不同价态外源硒对土壤硒形态及酶活性、微生物数量的影响[J]. 水土保持学报, 2015, 29(5): 137-141.

Fan J, Wang R, Hu H Q, et al. Effects of exogenous selenium with different valences on Se forms, enzyme activities and microbial quantity of soil[J]. Journal of Soil and Water Conservation, 2015, 29(5): 137-141.

[43]

Shaheen S M, Kwon E E, Biswas J K, et al. Arsenic, chromium, molybdenum, and selenium: Geochemical fractions and potential mobilization in riverine soil profiles orginating from Germang and Egypt[J].Chemosphere, 2017, 180: 553-563. doi: 10.1016/j.chemosphere.2017.04.054

[44]

Li J, Peng Q, Liang D L, et al. Effects of aging on the fraction distribution and bioavailability of selenium in three different soils[J].Chemosphere, 2016, 144: 2351-2359. doi: 10.1016/j.chemosphere.2015.11.011

[45]

况琴, 吴山, 黄庭, 等. 生物炭质和钢渣对江西丰城典型富硒区土壤硒有效性的调控效果与机理研究[J]. 岩矿测试, 2019, 38(6): 705-714.

Kuang Q, Wu S, Huang T, et al. Effect and mechanism of biomass carbon and steel slag as ameliorants on soil selenium availability in typical Se-rich are of Fengcheng City, Jiangxi Province[J]. Rock and Mineral Analysis, 2019, 38(6): 705-714.

[46]

Peng Q, Guo L, Ali F, et al. Influence of Pak choi plant cultivation on Se distribution, speciation and bioavailability in soil[J].Plant and Soil, 2016, 403: 331-342. doi: 10.1007/s11104-016-2810-8

[47]

Luo J, Cheng H, Ren J, et al. Mechanistic insights from DGT and soil solution measurements on the uptake of Ni and Cd by radish[J]. Environmental Science & Technology, 2014, 48(13): 7305-7313.

[48]

Zhang H, Davison W, Knight B, et al. In situ measurements of solution concentrations and fluxes of trace metals in soils using DGT[J]. Environmental Science & Technology, 1998, 32(5): 704-710.

[49]

Guan D X, Zheng J L, Luo J, et al. A diffusive gradients in thin-films technique for the assessment of bisphenols desorption from soils[J].Journal of Hazardous Materials, 2017, 331: 321-328. doi: 10.1016/j.jhazmat.2017.02.053

[50]

魏天娇, 管冬兴, 方文, 等. 梯度扩散薄膜技术(DGT)的理论及其在环境中的应用Ⅲ: 植物有效性评价的理论基础与应用潜力[J]. 农业环境科学学报, 2018, 37(5): 841-849.

Wei T J, Guan D X, Fang W, et al. Theory and application of diffusive gradients in thin-films(DGT)in the environment Ⅲ: Theoretical basis and application potential in phytoavailability assessment[J]. Journal of Agro-Environment Science, 2018, 37(5): 841-849.

相似文献(共20条)

[1]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[2]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[3]

刘冰权, 沙珉, 谢长瑜, 周强强, 魏星星, 周梵. 江西赣县清溪地区土壤硒地球化学特征和水稻根系土硒生物有效性影响因素. 岩矿测试, 2021, 40(5): 740-750. doi: 10.15898/j.cnki.11-2131/td.202107230082

[4]

高孝礼, 汤志云, 张培新, 肖灵, 李方实. 多目标生态地球化学调查土壤样品中砷硒锑有效态分析方法的商榷. 岩矿测试, 2004, (3): 173-178.

[5]

杨红霞, 何红蓼, 李冰, 倪哲明. 环境样品中痕量元素的化学形态分析Ⅱ.砷汞镉锡铅硒铬的形态分析. 岩矿测试, 2005, (2): 118-128.

[6]

谢薇, 杨耀栋, 菅桂芹, 李国成, 赵新华, 侯佳渝. 四种浸提剂对果园与菜地土壤有效硒浸提效果的对比研究. 岩矿测试, 2020, 39(3): 434-441. doi: 10.15898/j.cnki.11-2131/td.201905150063

[7]

张绿茵, 余晓平, 郭亚飞, 邓天龙. 生物样品中硒形态分析前处理技术. 岩矿测试, 2012, 31(3): 407-412.

[8]

龚仓, 王亮, 王顺祥, 王德伟, 陆海川, 张志翔, 江凌云, 严步青, 熊韬, 刘玖芬. 四川成都市唐昌镇土壤硒分布特征及影响因素. 岩矿测试, 2022, 41(3): 437-450. doi: 10.15898/j.cnki.11-2131/td.202111180179

[9]

伊芹, 程皝, 尚文郁. 土壤硒的存在特征及分析测试技术研究进展. 岩矿测试, 2021, 40(4): 461-475. doi: 10.15898/j.cnki.11-2131/td.202006230095

[10]

万国江, 葛晓立. 张家口克山病地区土壤硒的地球化学形态研究. 岩矿测试, 2000, (4): 254-258.

[11]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[12]

周丽沂, 张忠. 地球化学样品中硒的循序提取技术. 岩矿测试, 1997, (4): 255-261.

[13]

李迎春, 张磊, 尚文郁. 粉末压片-X射线荧光光谱法分析富硒土壤样品中的硒及主次量元素. 岩矿测试, 2022, 41(1): 145-152. doi: 10.15898/j.cnki.11-2131/td.202007090102

[14]

吴功建, 李家熙. 硒氟的地球化学特征与人体健康. 岩矿测试, 1996, (4): 241-250.

[15]

薛静, 安帅, 汪寅夫, 高慧莉, 史佳铭. 王水水浴消解-电感耦合等离子体质谱法测定土壤中的硒. 岩矿测试, 2020, 39(5): 720-725. doi: 10.15898/j.cnki.11-2131/td.202003050025

[16]

次仁旺堆, 多吉卫色, 索朗次仁, 尼玛次仁, 边巴次仁, 平措朗杰. 西藏山南市乃东区土壤硒分布特征及影响因素. 岩矿测试, 2022, 41(3): 427-436. doi: 10.15898/j.cnki.11-2131/td.202201100006

[17]

陈志兵. 碱性模式氢化物发生—原子荧光光谱法测定土壤中的痕量硒. 岩矿测试, 2002, (4): 311-314.

[18]

薛超群, 郭敏. 氢化物发生-原子荧光光谱法测定土壤样品中不同价态的硒. 岩矿测试, 2012, 31(6): 980-984.

[19]

薛佳. 液相色谱-原子荧光光谱联用法测定土壤砷铬锑硒元素价态. 岩矿测试, 2021, 40(2): 250-261. doi: 10.15898/j.cnki.11-2131/td.202003090028

[20]

赵宗生, 赵小学, 姜晓旭, 赵林林, 张霖琳. 原子荧光光谱测定土壤和水系沉积物中硒的干扰来源及消除方法. 岩矿测试, 2019, 38(3): 333-340. doi: 10.15898/j.cnki.11-2131/td.201809190106

计量
  • PDF下载量(9)
  • 文章访问量(440)
  • HTML全文浏览量(152)
  • 被引次数(0)
目录

Figures And Tables

应用梯度扩散薄膜技术评价天然富硒土壤中硒的生物有效性

吴超, 孙彬彬, 陈海杰, 成晓梦, 贺灵, 曾道明