【引用本文】 王昌宇, 李永利, 周文辉, 等. 内蒙古包头市固阳县某铁矿区周边土壤多元素测定与健康风险评价[J]. 岩矿测试, 2022, 41(3): 476-487. doi: 10.15898/j.cnki.11-2131/td.202109270129
WANG Changyu, LI Yongli, ZHOU Wenhui, et al. Determination of Multiple Elements in Soils Surrounding Iron Deposits from Guyang County, Baotou City, and Health Risk Assessment[J]. Rock and Mineral Analysis, 2022, 41(3): 476-487. doi: 10.15898/j.cnki.11-2131/td.202109270129

内蒙古包头市固阳县某铁矿区周边土壤多元素测定与健康风险评价

中国地质调查局呼和浩特自然资源综合调查中心,内蒙古 呼和浩特 010010

收稿日期: 2021-09-27  修回日期: 2021-12-11  接受日期: 2022-01-30

基金项目: 中国地质调查局地质调查项目(DD20208077)

作者简介: 王昌宇, 硕士, 工程师, 主要从事环境地球化学研究。E-mail: cgstjwchangyu@126.com

通信作者: 周文辉, 高级工程师, 主要从事矿山地质环境研究。E-mail: zhouwenhui@mail.cgs.gov.cn

Determination of Multiple Elements in Soils Surrounding Iron Deposits from Guyang County, Baotou City, and Health Risk Assessment

Hohhot Natural Resources Comprehensive Survey Center, China Geological Survey, Hohhot 010010, China

Corresponding author: ZHOU Wenhui, zhouwenhui@mail.cgs.gov.cn

Received Date: 2021-09-27
Revised Date: 2021-12-11
Accepted Date: 2022-01-30

摘要:矿产的开发利用会向周边土壤释放重金属元素,当人体摄入或接触受污染的土壤则可能会产生健康危害。铁矿是中国分布最为广泛的矿种之一,但前人对铁矿区土壤重金属健康风险的研究较少,尤其是干旱区铁矿。干旱区生态脆弱,修复困难,因此需要更加科学地对土壤加强管理。本文以内蒙古包头市固阳县某铁矿区为研究对象,采集表层土壤101件,采用电感耦合等离子体质谱/发射光谱法和原子荧光光谱法测定了土壤中的重金属含量,研究元素的特征,并利用健康风险评价法评价重金属对人体的健康危害,提出土壤污染筛选值。结果显示:①研究区土壤中Cu、Cr、Ni变异系数大于0.5,平均含量明显高于河套平原背景值;②Cu的高值区主要分布于尾矿库与选矿厂周边,Cr、Ni的高值区主要分布于基岩山区;③健康风险评价结果表明各元素的危害商(HQ)均小于1,由大到小顺序为As>Cr>Ni>Cu>Cd>Zn>Hg,总危害商(HI)的平均值为0.542,有1个点HI大于1,位于矿区南部基岩区,Cr、Ni、As的贡献率分别为59%、25%、15%,总致癌风险指数(CR)均小于10-4;④基于人体健康计算提出研究区土壤Cr、Ni、As的污染筛选值为541、579、32.8mg/kg。本研究揭示了:①研究区Cr、Ni主要受到成土母质影响,Cu主要受到选矿活动影响;②土壤重金属总体上健康危害较低,受成土母质影响较大,但仍需关注尾矿库周边污染元素的累积情况,并避免经口摄入污染物;③不同地区或不同类型的铁矿中的伴生元素不同,仍需对各气候分区内不同类型的铁矿进一步开展研究。

关键词: 土壤, 重金属, 铁矿, 干旱区, 健康风险, 筛选值, 电感耦合等离子体质谱/发射光谱法, 原子荧光光谱法

要点

(1) 研究区Cr、Ni主要在成土时自然富集,采矿活动主要引起Cu富集。

(2) 研究区的健康危害主要来自Cr、Ni,高危害区主要分布在基岩区。

(3) 尾矿库周边也具有较高的健康风险,且人类活动频繁,需注意防护。

Determination of Multiple Elements in Soils Surrounding Iron Deposits from Guyang County, Baotou City, and Health Risk Assessment

ABSTRACT

BACKGROUND:

The exploitation of minerals releases heavy metals into the surrounding soil, which can cause health hazards when biological entities are exposed to contaminated soil. Iron ore is one of the most widely distributed minerals in China, but there are few studies on the health risk of soil heavy metals in iron mines, especially in arid areas. The ecosystem of the arid area is fragile and difficult to repair once it has been polluted.

OBJECTIVES:

To perform environmental health risk assessment for topsoil surrounding iron deposits from Guyang County, Baotou City.

METHODS:

101 topsoil samples were collected from an iron mine in Guyang County, Baotou City. Heavy metals were measured by inductively coupled plasma-mass spectrometry/optical emission spectrometry and atomic fluorescence spectrometry, to study element characteristics. The health risk assessment method was used to evaluate and calculate the screening value.

RESULTS:

The results showed that the variation coefficients of copper, chromium, and nickel in the study area were higher than 0.5, and the average contents of these elements were significantly higher than that in the Hetao Plain. The high value areas of copper were mainly distributed around tailings ponds and concentrators, while the high value areas of chromium or nickel were mainly distributed in bedrock mountains. The assessment of health hazards showed that the hazard quotient of all elements was less than 1, and the order was As>Cr>Ni>Cu>Cd>Zn>Hg. The average of total hazard quotient was 0.542. There was a sample in the bedrock mountain south of the iron mine, which had a total hazard quotient exceeding 1, and the contribution rates of chromium, nickel and arsenicwere 59%, 25%, and 15%, respectively. The carcinogenic hazard index of all elements was below 10-4. Soil screening levels of chromium, nickel and arsenic in the study area were 579mg/kg, 622mg/kg and 32.8mg/kg base on human health.

CONCLUSIONS:

Chromium and nickel in the study soil are mainly affected by parent materials of soil formation, while copper is mainly affected by mineral processing activities. In general, the health hazard of heavy metals in soil is relatively low, and is greatly influenced by the parent materials of soil formation. However, it is still necessary to pay attention to the accumulation of polluted elements in the areas around tailings ponds, and to avoid oral intake of pollutants. And it is also necessary to further study the feature of soil heavy metals from different kinds of iron mines and different regions that have not been studied before, because the associated elements of iron ore in different regions or types are not the same.

KEY WORDS: soil, heavy metals, iron mine, arid area, healthy risk, screening levels, inductively coupled plasma-mass spectrometry/optical emission spectrometry, atomic fluorescence spectrometry

HIGHLIGHTS

(1) In the study area, chromium and nickel were mainly enriched during soil formation, while copper was mainly enriched by mining activities.

(2) The health hazards in the study area came mainly from chromium and nickel, and the high risk areas were primarily distributed in the bedrock area.

(3) The surrounding areas contained tailings ponds, which posed a high health risk to the local population.

本文参考文献

[1]

李建中, 张进德. 我国矿山地质环境调查工作探讨[J]. 水文地质工程地质, 2018, 45(4): 169-172.

Li J Z, Zhang J D. Discussion on the work of mine geo-environmental investigation of China[J]. Hydrogeology & Engineering Geology, 2018, 45(4): 169-172.

[2]

张进德, 郗富瑞. 我国废弃矿山生态修复研究[J]. 生态学报, 2020, 40(21): 7921-7930.

Zhang J D, Xi F R. Study on ecological restoration of abandoned mines in China[J]. Acta Ecologica Sinica, 2020, 40(21): 7921-7930.

[3]

张素荣, 王昌宇, 刘继红, 等. 雄安新区西南部土壤重金属污染特征及生态风险评价[J]. 地学前缘, 2021, 28(4): 238-249.

Zhang S R, Wang C Y, Liu J H, et al. Assessments of heavy metal pollution in soils of the southwestern Xiong'an District and its ecological risk[J]. Earth Science Frontiers, 2021, 28(4): 238-249.

[4]

邢怡, 张素荣, 刘继红, 等. 农作物根系土对农产品安全的影响分析——以保定东部地区为例[J]. 地质调查与研究, 2019, 42(3): 219-224. doi: 10.3969/j.issn.1672-4135.2019.03.008

Xing Y, Zhang S R, Liu J H, et al. Effect of crop root soil on agricultural product safety: Take the eastern part of Baoding, Hebei Province as an example[J].Geological Survey and Research, 2019, 42(3): 219-224. doi: 10.3969/j.issn.1672-4135.2019.03.008

[5]

孙晓艳, 罗立强. 重金属生物有效性在矿山环境评价中应用研究进展[J]. 矿产保护与利用, 2019, 39(1): 100-108.

Sun X Y, Luo L Q. Research progress on the application bioavailability of heavy metals to evaluate ecological risk in mining area[J]. Conservation and Utilization of Mineral Resources, 2019, 39(1): 100-108.

[6]

张进德, 田磊, 裴圣良, 等. 矿山水土污染与防治对策研究[J]. 水文地质工程地质, 2021, 48(2): 157-163.

Zhang J D, Tian L, Pei S L, et al. A discussion of soil and water pollution and control countermeasures in mining area of China[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 157-163.

[7]

赵立群, 王春女, 张敏, 等. 中国铁矿资源勘查开发现状及供需形势分析[J]. 地质与勘探, 2020, 56(3): 635-643.

Zhao L Q, Wang C N, Zhang M, et al. Current exploration status and supply-demand situation of iron ore resources in China mainland[J]. Geology and Exploration, 2020, 56(3): 635-643.

[8]

胡国成, 张丽娟, 齐剑英, 等. 贵州万山汞矿周边土壤重金属污染特征及风险评价[J]. 生态环境学报, 2015, 24(5): 879-885.

Hu G C, Zhang L J, Qi J Y, et al. Contaminant characteristics and risk assessment of heavy metals in soils from Wanshan mercury mine area, Guizhou Province[J]. Ecology and Environmental Sciences, 2015, 24(5): 879-885.

[9]

李三中, 徐华勤, 陈建安, 等. 某矿区砷碱渣堆场周边土壤重金属污染评价及潜在生态风险分析[J]. 农业环境科学学报, 2017, 36(6): 1141-1148.

Li S Z, Xu H Q, Chen J A, et al. Pollutions and potential ecological risk of heavy metals in soils around waste arsenic-containing alkaline sites[J]. Journal of Agro-Environment Science, 2017, 36(6): 1141-1148.

[10]

陶美霞, 胡虎, 胡兰文, 等. 上饶市某铜矿废弃地土壤重金属污染特征及健康风险评价[J]. 生态环境学报, 2018, 27(6): 1153-1159.

Tao M X, Hu H, Hu L W, et al. Characteristics and health risk assessment of heavy metals in polluted abandon soil of Shangrao, Jiangxi[J]. Ecology and Environmental Sciences, 2018, 27(6): 1153-1159.

[11]

邬光海, 王晨昇, 陈鸿汉, 等. 内蒙古废弃钨钼矿区周围土壤重金属污染生态环境评价及成因分析[J]. 中国地质, 2020, 47(6): 1838-1852.

Wu G H, Wang C S, Chen H H, et al. Eco-environmental assessment and genetic analysis of heavy metal pollution in the soil around the abandoned tungsten-molybdenum mine area in Inner Mongolia[J]. Geology in China, 2020, 47(6): 1838-1852.

[12]

于沨, 王伟, 于扬, 等. 川西九龙地区锂铍矿区土壤重金属分布特征及生态风险评价[J]. 岩矿测试, 2021, 40(3): 408-424.

Yu F, Wang W, Yu Y, et al. Distribution characteristics and ecological risk assessment of heavy metals in soils from Jiulong Li-Be mining area, western Sichuan Province, China[J]. Rock and Mineral Analysis, 2021, 40(3): 408-424.

[13]

李晶, 杨超元, 殷守强, 等. 草原型露天煤矿区土壤重金属污染评价及空间分布特征[J]. 煤炭学报, 2019, 44(12): 3676-3684.

Li J, Yang C Y, Yin S Q, et al. Evaluation and spatial distribution characteristics of soil heavy metals pollution in grassland open-pitcoal mine area[J]. Journal of China Coal Society, 2019, 44(12): 3676-3684.

[14]

Niu S, Fang Q, Yu J, et al. Heavy metals present in the soils from extremely large opencast iron mine pit[J].Bulletin of Environmental Contamination and Toxicology, 2021, 107(6): 984-989. doi: 10.1007/s00128-021-03266-9

[15]

Chung S Y, Senapathi V, Park K H, et al. Source and remediation for heavy metals of soils at an iron mine of Ulsan City, Korea[J].Arabian Journal of Geosciences, 2018, 11: 769. doi: 10.1007/s12517-018-4141-y

[16]

Hosseini S M, Rezazadeh M, Salimi A, et al. Distribution of heavy metals and arsenic in soils and indigenous plants near an iron ore mine in northwest Iran[J].Acta Ecologica Sinica, 2018, 38(5): 363-367. doi: 10.1016/j.chnaes.2018.02.004

[17]

黄兴星, 朱先芳, 唐磊, 等. 密云水库上游某铁矿区土壤重金属含量及形态研究[J]. 中国环境科学, 2012, 32(9): 1632-1639. doi: 10.3969/j.issn.1000-6923.2012.09.014

Huang X X, Zhu X F, Tang L, et al. Studies on the distribution and chemical speciation of heavy metals in a iron mine soil of the upstream area of Miyun Reservoir, Beijing[J].China Environmental Science, 2012, 32(9): 1632-1639. doi: 10.3969/j.issn.1000-6923.2012.09.014

[18]

孙厚云, 卫晓锋, 贾凤超, 等. 承德伊逊河钒钛磁铁矿小流域土壤重金属地球化学基线及生态风险累积效应[J]. 地质学报, 2021, 95(2): 588-604.

Sun H Y, Wei X F, Jia F C, et al. Geochemical baseline and ecological risk accumulation effect of soil heavy metals in the small-scale drainage catchment of V-Ti magnetite in the Yixun River Basin, Chengde[J]. Acta Geologica Sinica, 2021, 95(2): 588-604.

[19]

宋凤敏, 张兴昌, 王彦民, 等. 汉江上游铁矿尾矿库区土壤重金属污染分析[J]. 农业环境科学学报, 2015, 34(9): 1707-1714.

Song F M, Zhang X C, Wang Y M, et al. Heavy metal pollution in soils surrounding an iron tailings in upstream areas of Hanjiang River, Shaanxi Province[J]. Journal of Agro-Environment Science, 2015, 34(9): 1707-1714.

[20]

王蕊, 陈楠, 张二喜, 等. 龙岩市某铁锰矿区土壤重金属地球化学空间分布特征与来源分析[J]. 环境科学, 2021, 42(3): 1114-1122.

Wang R, Chen N, Zhang E X, et al. Geochemical patterns and source analysis of soil heavy metals in an iron and manganese ore area of Longyan City[J]. Environmental Science, 2021, 42(3): 1114-1122.

[21]

杨伟光, 王美娥, 陈卫平, 等. 新疆干旱区某矿冶场对周围土壤重金属累积的影响[J]. 环境科学, 2019, 40(1): 445-452.

Yang W G, Wang M E, Chen W P, et al. Effect of a mining and smelting plant on the accumulation of heavy metals in soils in arid areas in Xinjiang[J]. Environmental Science, 2019, 40(1): 445-452.

[22]

贺灵, 吴超, 曾道明, 等. 中国西南典型地质背景区土壤重金属分布及生态风险特征[J]. 岩矿测试, 2021, 40(3): 384-396.

He L, Wu C, Zeng D M, et al. Distribution of heavy metals and ecological risk of soils in the typical geological background region of southwest China[J]. Rock and Mineral Analysis, 2021, 40(3): 384-396.

[23]

白宇明, 李永利, 房利民, 等. 包头市矿山地质环境现状和防治建议[J]. 中国矿业, 2020, 29(S1): 114-116.

Bai Y M, Li Y L, Fang L M, et al. The current situation and prevention proposals of the mine geological environment in Baotou City[J]. China Mining Magazine, 2020, 29(S1): 114-116.

[24]

程莉, 宁小莉. 包头市生态城市建设中社会进步指标评价[J]. 干旱区资源与环境, 2014, 28(11): 12-16.

Cheng L, Ning X L. The assessment of social progress index in the eco-city construction for Baotou[J]. Journal of Arid Land Resources and Environment, 2014, 28(11): 12-16.

[25]

张连科, 张花娟, 黄学敏, 等. 包头市不同功能区土壤重金属污染评价[J]. 水土保持研究, 2016, 23(2): 352-356.

Zhang L K, Zhang H J, Huang X M, et al. Assessment of soil heavy metal pollution in different function areas in Baotou[J]. Research of Soil and Water Conservation, 2016, 23(2): 352-356.

[26]

孙鹏, 李艳伟, 张连科, 等. 包头市典型工业区表层土壤中重金属污染状况及其潜在生态风险研究[J]. 岩矿测试, 2016, 35(4): 433-439.

Sun P, Li Y W, Zhang L K, et al. Heavy metal pollution in topsoil from the Baotou industry area and its potential ecological risk evaluation[J]. Rock and Mineral Analysis, 2016, 35(4): 433-439.

[27]

黄哲, 曲世华, 白岚, 等. 包头城区土壤重金属空间分布特征及污染评价[J]. 环境工程, 2017, 35(5): 149-153.

Huang Z, Qu S H, Bai L, et al. Spatial distribution characteristics and pollution assessment of heavy metal soils in urban areas of Baotou[J]. Environmental Engineering, 2017, 35(5): 149-153.

[28]

李卫平, 王非, 杨文焕, 等. 包头市南海湿地土壤重金属污染评价及来源解析[J]. 生态环境学报, 2017, 26(11): 1977-1984.

Li W P, Wang F, Yang W H, et al. Pollution assessment and source apportionment of heavy metals in Nanhai Wetland soil of Baotou City[J]. Ecology and Environmental Sciences, 2017, 26(11): 1977-1984.

[29]

郭伟, 赵仁鑫, 张君, 等. 内蒙古包头铁矿区土壤重金属污染特征及其评价[J]. 环境科学, 2011, 32(10): 3099-3105.

Guo W, Zhao R X, Zhang J, et al. Distribution characteristics and assessment of soil heavy metal pollution in the iron mining of Baotou in Inner Mongolia[J]. Environmental Science, 2011, 32(10): 3099-3105.

[30]

刘飞, 苏尚国, 余晓艳, 等. 内蒙古文圪气镁铁-超镁铁质杂岩体中环带角闪石矿物学特征及成因[J]. 地学前缘, 2013, 20(1): 206-222.

Liu F, Su S G, Yu X Y, et al. Characteristics and petrogenesis of zoned amphiboles in Wengeqi mafic-ultramafic complex, Inner Mongolia[J]. Earth Science Frontiers, 2013, 20(1): 206-222.

[31]

郝国杰, 王惠初, 牛广华, 等. 中国变质大地构造研究及科学意义[J]. 地质调查与研究, 2020, 43(2): 89-96. doi: 10.3969/j.issn.1672-4135.2020.02.004

Hao G J, Wang H C, Niu G H, et al. Metamorphic geotectonic research and scientific significance in China[J].Geological Survey and Research, 2020, 43(2): 89-96. doi: 10.3969/j.issn.1672-4135.2020.02.004

[32]

陈梦舫, 骆永明, 宋静, 等. 中、英、美污染场地风险评估导则异同与启示[J]. 环境监测管理与技术, 2011, 23(3): 14-18. doi: 10.3969/j.issn.1006-2009.2011.03.004

Chen M F, Luo Y M, Song J, et al. Comparison of USA, UK and Chinese risk assessment guidelines and the implications for China[J].The Administration and Technique of Environmental Monitoring, 2011, 23(3): 14-18. doi: 10.3969/j.issn.1006-2009.2011.03.004

[33]

谷阳光, 高富代. 我国省会城市土壤重金属含量分布与健康风险评价[J]. 环境化学, 2017, 36(1): 62-71.

Gu Y G, Gao F D. Spatial distribution and health risk assessment of heavy metals in provincial capital cities, China[J]. Environmental Chemistry, 2017, 36(1): 62-71.

[34]

冯宇佳, 赵全利, 孙洪欣, 等. 华北地区菜田土壤-蔬菜重金属污染状况和健康风险评价[J]. 河北农业大学学报, 2017, 40(1): 1-7.

Feng Y J, Zhao Q L, Sun H X, et al. Assessment of soil-vegetable contamination and health risk of heavy metals in vegetables around North China[J]. Journal of Agricultural University of Hebei, 2017, 40(1): 1-7.

[35]

Mehr M R, Keshavarzi B, Moore F, et al. Distribution, source identification and health risk assessment of soil heavy metals in urban areas of Isfahan Province, Iran[J].Journal of African Earth Sciences, 2017, 132: 16-26. doi: 10.1016/j.jafrearsci.2017.04.026

[36]

Qing X, Zong Y T, Lu S G, et al. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, northeast China[J].Ecotoxicology and Environmental Safety, 2015, 120: 377-385. doi: 10.1016/j.ecoenv.2015.06.019

[37]

Praveena S M, Ismail S N S, Aris A Z, et al. Health risk assess-ment of heavy metal exposure in urban soil from Seri Kembangan (Malaysia)[J].Arabian Journal of Geosciences, 2015, 8(11): 9753-9761. doi: 10.1007/s12517-015-1895-3

[38]

王喜宽, 黄增芳, 苏美霞, 等. 河套地区土壤基准值及背景值特征[J]. 岩矿测试, 2007, 26(4): 287-292. doi: 10.3969/j.issn.0254-5357.2007.04.008

Wang X K, Huang Z F, Su M X, et al. Characteristics of reference and background values of soils in Hetao area[J]. Rock and Mineral Analysis, 2007, 26(4): 287-292. doi: 10.3969/j.issn.0254-5357.2007.04.008

[39]

赵东杰, 王学求. 滇黔桂岩溶区河漫滩土壤重金属含量、来源及潜在生态风险[J]. 中国环境科学, 2020, 40(4): 1609-1619. doi: 10.3969/j.issn.1000-6923.2020.04.028

Zhao D J, Wang X Q. Distribution, sources and potential ecological risk of heavy metals in the floodplain soils of the karst area of Yunnan, Guizhou, Guangxi[J].China Environmental Science, 2020, 40(4): 1609-1619. doi: 10.3969/j.issn.1000-6923.2020.04.028

[40]

李洋, 张乃明, 魏复盛, 等. 滇东镉高背景区菜地土壤健康风险评价与基准[J]. 中国环境科学, 2020, 40(10): 4522-4530. doi: 10.3969/j.issn.1000-6923.2020.10.039

Li Y, Zhang N M, Wei F S, et al. A benchmark study on soil health risks of vegetable fields in a high-cadmium background area in eastern Yunnan[J].China Environmental Science, 2020, 40(10): 4522-4530. doi: 10.3969/j.issn.1000-6923.2020.10.039

[41]

南景博, 黄华, 王长乐, 等. 内蒙古固阳绿岩带条带状铁建造地球化学特征与沉积环境讨论[J]. 中国地质, 2017, 44(2): 331-345.

Nan J B, Huang H, Wang C L, et al. Geochemistry and depositional setting of banded iron formations in Guyang greenstone belt, Inner Mongolia[J]. Geology in China, 2017, 44(2): 331-345.

[42]

Su S G, Lesher C M. Genesis of PGE mineralization in the Wengeqi mafic-ultramafic complex, Guyang County, Inner Mongolia, China[J].Mineralium Deposita, 2012, 47(1-2): 197-207. doi: 10.1007/s00126-011-0351-x

[43]

Wu S, Peng S, Zhang X, et al. Levels and health risk assessments of heavy metals in urban soils in Dongguan, China[J].Journal of Geochemical Exploration, 2015, 148: 71-78. doi: 10.1016/j.gexplo.2014.08.009

[44]

李如忠, 潘成荣, 徐晶晶, 等. 典型有色金属矿业城市零星菜地蔬菜重金属污染及健康风险评估[J]. 环境科学, 2013, 34(3): 1076-1085.

Li R Z, Pan C R, Xu J J, et al. Contamination and health risk for heavy metals via consumption of vegetables grown in fragmentary vegetable plots from a typical nonferrous metals mine city[J]. Environmental Science, 2013, 34(3): 1076-1085.

[45]

Diami S M, Kusin F M, Madzin Z, et al. Potential ecological and human health risks of heavy metals in surface soils associated with iron ore mining in Pahang, Malaysia[J].Environmental Science and Pollution Research, 2016, 23(20): 21086-21097. doi: 10.1007/s11356-016-7314-9

[46]

成杭新, 李括, 李敏, 等. 中国城市土壤微量金属元素的管理目标值和整治行动值[J]. 地学前缘, 2015, 22(5): 215-225.

Cheng H X, Li K, Li M, et al. Management target value (MTV) and rectification action value (RAV) of trace metals in urban soil in China[J]. Earth Science Frontiers, 2015, 22(5): 215-225.

相似文献(共20条)

[1]

李小莉. X射线荧光光谱法测定铁矿中铁等多种元素. 岩矿测试, 2008, 27(3): 229-231.

[2]

齐璐璐, 赵会芹, 陈子学, 郑育锁, 孟凡辉, 肖波, 张颖. 连续光源原子吸收光谱法测定土壤水溶性盐中钙镁. 岩矿测试, 2008, 27(2): 95-98.

[3]

黄园英, 吴淑琪, 佟玲, 张玲金. 土壤中持久性有机污染物分析的前处理方法. 岩矿测试, 2008, 27(2): 81-86.

[4]

张燮, 张兴磊, 陈焕文, 周跃明, 花榕, 胡燕. 手持式消光光度计的研制及用于掺杂牛奶的现场快速检测. 岩矿测试, 2008, 27(3): 169-173.

[5]

林光西. 氢化物发生-原子荧光光谱法直接测定地球化学样品中痕量碲. 岩矿测试, 2008, 27(2): 151-152.

[6]

李刚, 苏文峰. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒. 岩矿测试, 2008, 27(2): 120-122.

[7]

方金梅. 福州市土壤硒形态分析及其迁移富集规律. 岩矿测试, 2008, 27(2): 103-107.

[8]

江林, 刘晓端, 张静. 土壤中不同形态砷的分析方法. 岩矿测试, 2008, 27(3): 179-183.

[9]

宋绵, 龚磊, 王艳, 田大争, 王新峰, 李跃, 李伟. 河北阜平县表层土壤重金属对人体健康的风险评估. 岩矿测试, 2022, 41(1): 133-144. doi: 10.15898/j.cnki.11-2131/td.202109290135

[10]

赵西强, 庞绪贵, 王增辉, 战金成. 利用原子荧光光谱-电感耦合等离子体质谱法研究济南市大气干湿沉降重金属含量及年沉降通量特征. 岩矿测试, 2015, 34(2): 245-251. doi: 10.15898/j.cnki.11-2131/td.2015.02.016

[11]

刘广民, 尹莉莉, 董永亮, 肖宇芳. 土壤中五氯酚的快速测定. 岩矿测试, 2008, 27(2): 117-119.

[12]

, 梅俊, 熊采华. 氢化物发生原子荧光光谱法测定土壤中络合态锑. 岩矿测试, 2002, (4): 275-278.

[13]

社恒清, 孙健, 纪雷, 刘心同, 林雨霏, 王岩. 自举法对我国进口铁矿二氧化硅含量的代表值估计. 岩矿测试, 2007, 26(1): 29-32.

[14]

赵辰, 孙彬彬, 贺灵, 吴超, 成晓梦, 曾道明, 刘冬. 四川昭觉县中部乡镇表层土壤硒地球化学特征. 岩矿测试, 2022, 41(3): 412-426. doi: 10.15898/j.cnki.11-2131/td.202111250185

[15]

贺灵, 孙彬彬, 吴超, 成晓梦, 吴正丰, 周荣强, 候树军. 浙江省江山市猕猴桃果园土壤环境质量与生态风险评价. 岩矿测试, 2019, 38(5): 524-533. doi: 10.15898/j.cnki.11-2131/td.201901080003

[16]

顾涛, 赵信文, 胡雪原, 喻望, 曾敏, 王节涛. 珠海市新马墩村农业园区土壤重金属分布特征及风险评价. 岩矿测试, 2018, 37(4): 419-430. doi: 10.15898/j.cnki.11-2131/td.201712100190

[17]

刘久臣, 刘晓端, 徐 清, 汤奇峰. 上海崇明岛表层土壤重金属元素分布特征与环境地球化学基线值研究. 岩矿测试, 2010, 29(3): 245-249.

[18]

谭科艳, 刘晓端, 黄园英, 陈燕芳. 固定配比的钠化膨润土与土壤在不同pH条件下对 重金属离子的吸附效果研究. 岩矿测试, 2010, 29(4): 411-413.

[19]

陈志兵. 碱性模式氢化物发生—原子荧光光谱法测定土壤中的痕量硒. 岩矿测试, 2002, (4): 311-314.

[20]

马生明, 朱立新, 汤丽玲, 唐世新. 城镇周边和江河沿岸土壤中Hg和Cd存在形式解析与生态风险评估. 岩矿测试, 2020, 39(2): 225-234. doi: 10.15898/j.cnki.11-2131/td.201906060081

计量
  • PDF下载量(6)
  • 文章访问量(78)
  • HTML全文浏览量(17)
  • 被引次数(0)
目录

Figures And Tables

内蒙古包头市固阳县某铁矿区周边土壤多元素测定与健康风险评价

王昌宇, 李永利, 周文辉, 毛磊, 卢震, 胡浩远, 杜鑫, 边鹏, 高琪