【引用本文】 董淑霞, 谢宁宁, 韩继庆, 等. 悬乳体进样-电感耦合等离子体质谱法测定油菜籽中的毒性低温元素砷锑镉铊[J]. 岩矿测试, 2022, 41(3): 364-373. doi: 10.15898/j.cnki.11-2131/td.202109250127
DONG Shuxia, XIE Ningning, HAN Jiqing, et al. Determination of Toxic and Low-Temperature Elements As, Sb, Cd and Tl in Rapeseeds by Inductively Coupled Plasma-Mass Spectrometry with Slurry-emulsion System Sampling[J]. Rock and Mineral Analysis, 2022, 41(3): 364-373. doi: 10.15898/j.cnki.11-2131/td.202109250127

悬乳体进样-电感耦合等离子体质谱法测定油菜籽中的毒性低温元素砷锑镉铊

1. 

湖北民族大学化学与环境工程学院,湖北 恩施 445000

2. 

硒食品营养与健康智能技术湖北省工程研究中心,湖北 恩施 445000

收稿日期: 2021-09-25  修回日期: 2022-01-22  接受日期: 2022-03-13

基金项目: 国家自然科学基金项目(21565013);湖北省硒食品营养与健康工程中心开放项目(PT082016)

作者简介: 董淑霞,硕士研究生,从事食品药品元素组学分析研究。E-mail: 1163672504@qq.com

通信作者: 吴少尉,博士,教授,从事原子光谱/质谱联用分析技术研究。E-mail: 2361130534@qq.com

Determination of Toxic and Low-Temperature Elements As, Sb, Cd and Tl in Rapeseeds by Inductively Coupled Plasma-Mass Spectrometry with Slurry-emulsion System Sampling

1. 

College of Chemistry and Environmental Engineering, Hubei University for Nationalities, Enshi 445000, China

2. 

Hubei Engineering Research Center of Selenium Food Nutrition and Health Intelligent Technology, Enshi 445000, China

Corresponding author: WU Shaowei, 2361130534@qq.com

Received Date: 2021-09-25
Revised Date: 2022-01-22
Accepted Date: 2022-03-13

摘要:油菜籽品质及重金属污染程度直接关系到人类健康,对油菜籽中As、Sb、Cd和Tl等有毒元素含量进行监测有助于对食用油生产原材料的提前监控。避开强酸消解前处理的繁琐,为了实现快速测定菜籽中As、Sb、Cd和Tl等易挥发有毒元素的准确含量,以及解决粮油食品脂肪含量高对前处理的挑战,本文采用一种悬浮-乳化协同制样技术,详细考察了影响悬浮-乳化的诸多条件,制得均匀稳定的悬浮-乳化试液(Slurry-Emulsion Solution,SES)体系。在进样效率高的电热蒸发器(ETV)中,优化程序升温参数和改进剂硝酸钯的用量,SES直接进样,采用电感耦合等离子体质谱(ICP-MS)测定了油菜籽中As、Sb、Cd和Tl。该方法对As、Sb、Cd和Tl的相对标准偏差(RSD)分别为10.1%、8.8%、8.9%、6.4% [c=0.5%(m/V),n=5]。在最佳实验条件下,As、Sb、Cd和Tl检出限(3σ)分别为40.0ng/L、20.0ng/L、50.0ng/L和10.0ng/L,对应原始固体样品的检出限(3σ)分别为8.0ng/g、4.0ng/g、10.0ng/g和2.0ng/g。菜籽样品中As、Sb、Cd和Tl含量的测定范围分别在50.4~90.5ng/g、28.0~59.9ng/g、51.3~69.1ng/g、91.3~216.6ng/g。本文建立的悬浮-乳化协同处理高油脂含量菜籽的分析方法简便快速、成本低,充分发挥ETV进样优势,助推了ETV-ICP-MS固体进样分析应用。

关键词: 油菜籽, 悬浮乳化体, 电热蒸发, 电感耦合等离子体质谱法, , , ,

要点

(1) 强酸溶样耗时长易污染,而悬浮和乳化同步处理油菜籽,可制备均匀稳定的悬乳液。

(2) 菜渣饼细化悬浮协同油珠乳化分散均匀,悬乳体进样解决高油脂样品分析的困难。

(3) 优化ETV程序升温参数,有效克服了40Ar35Cl多原子离子干扰75As的质谱测定。

Determination of Toxic and Low-Temperature Elements As, Sb, Cd and Tl in Rapeseeds by Inductively Coupled Plasma-Mass Spectrometry with Slurry-emulsion System Sampling

ABSTRACT

BACKGROUND:

The quality of rapeseed and the degree of heavy metal pollution are directly related to human health. Monitoring the content of toxic elements such as As, Sb, Cd, and Tl in rapeseed is helpful for early monitoring of raw materials for edible oil production.

OBJECTIVES:

To avoid the cumbersome pretreatment of strong acid digestion, quickly determine the accurate content of volatile toxic elements such as As, Sb, Cd, and Tl in rapeseed, and to solve the challenge of pretreatment due to the heavy fat content of grains, oils, and foods.

METHODS:

A suspension-emulsion synergistic sample preparation technique was used to investigate conditions affecting suspension-emulsion, and a homogeneous and stable slurry-emulsion solution (SES) system was prepared. In the electrothermal vaporizer (ETV) with high sampling efficiency, the temperature-programmed parameters and the dosage of improver palladium nitrate were all optimized. SES was directly injected, and inductively coupled plasma-mass spectrometry (ICP-MS) was used to determine As, Sb, Cd and Tl.

RESULTS:

The overall reproducibility (relative standard deviation, RSD) of the suspension-emulsion sampling-ETV-ICP-MS detection method were 10.1%, 8.8%, 8.9% and 6.4% [c=0.5% (m/V), n=5] for As, Sb, Cd and Tl, respectively. Under the optimum conditions, the limits of detection (3σ) were 40.0ng/L, 20.0ng/L, 50.0ng/L and 10.0ng/L for As, Sb, Cd and Tl, respectively. Accordingly, the limits of detection for the original solid samples were 8.0ng/g, 4.0ng/g, 10.0ng/g and 2.0ng/g for As, Sb, Cd and Tl, respectively. The contents of As, Sb, Cd and Tl in tested rapeseed samples were 50.4-90.5ng/g, 28.0-59.9ng/g, 51.3-69.1ng/g and 91.3-216.6ng/g, respectively.

CONCLUSIONS:

The suspension-emulsion synergistic treatment of rapeseed with high oil content is simple, fast, and cost efficient. It utilizes the advantages of ETV sampling and promotes the application of ETV-ICP-MS solid sampling analysis.

KEY WORDS: rapeseed, slurry-emulsion solution, electrothermal vaporization, inductively coupled plasma-mass spectrometry, As, Sb, Cd, Tl

HIGHLIGHTS

(1) Dissolving the rapeseed sample with strong acid is a lengthy process and is vulnerable to pollution. The rapeseed was synchronously treated by suspension and emulsification to prepare a uniform and stable slurry-emulsion system.

(2) Rapeseed residue cake refinement suspension cooperated with emulsified oil beads to disperse uniformly. SES injection solved the difficulty of analysis of high-oil samples.

(3) Optimisation of the temperature programming parameters of ETV effectively overcomes the interference of 40Ar35Cl polyatomic ions on 75As during mass spectrometry determination.

本文参考文献

[1]

Ghane E T, Poormohammadi A, Khazaei S, et al. Concentration of potentially toxic elements in vegetable oils and health risk assessment: A systematic review and meta-analysis[J].Biological Trace Element Research, 2022, 200(1): 437-446. doi: 10.1007/s12011-021-02645-x

[2]

Shah N S, Soylak M. Advanced methodologies for trace elements in edible oil samples: A review[J].Critical Reviews in Analytical Chemistry, 2021, 1895710: 1-20.

[3]

贺小敏, 王敏, 王小东, 等. 微波消解-石墨炉原子吸收光谱法测定菜籽及饼粕中铅和镉[J]. 光谱学与光谱分析, 2007, 27(11): 2353-2356.

He X M, Wang M, Wang X D, et al. Determination of lead and cadmium in rapeseed and meal by microwave digestion-inductively coupled plasma mass spectrometry[J]. Spectroscopy and Spectral Analysis, 2007, 27(11): 2353-2356.

[4]

López-García I, Vicente-Martínez Y, Hernández-Córdoba M, et al. Determination of cadmium and lead in edible oils by electrothermal atomic absorption spectrometry after reverse dispersive liquid-liquid microextraction[J].Talanta, 2014, 124(13): 106-110.

[5]

张友峰, 吕和霖, 郑盼茜, 等. 油菜籽皮仁中重金属、多环芳烃和硫苷含量分布[J]. 中国油脂, 2021, 46(7): 86-91.

Zhang Y F, Lyu H L, Zheng P Q, et al. Distribution of heavy metal polycyclic aromatic hydrocarbons and glucosinolates in rapeseed kernels[J]. China Oils and Fats, 2021, 46(7): 86-91.

[6]

刘全吉, 杨慧, 毛雪飞, 等. 测定油菜籽中4种形态砷的前处理方法研究[J]. 农产品质量与安全, 2015, (5): 45-48. doi: 10.3969/j.issn.1674-8255.2015.05.012

Liu Q J, Yang H, Mao X F, et al. Study on the pretreatment method for the determination of four forms of arsenic in rapeseed[J].Quality and Safety of Agro-Products, 2015, (5): 45-48. doi: 10.3969/j.issn.1674-8255.2015.05.012

[7]

刘玲娅, 刘信平, 廖红华, 等. 食用油菜籽中硒和铊的分布形态分析[J]. 药物分析杂志, 2017, 37(5): 875-881.

Liu L Y, Liu X P, Liao H H, et al. Distribution and speciation analysis of selenium and thallium in edible rapeseed[J]. Chinese Journal of Pharmaceutical Analysis, 2017, 37(5): 875-881.

[8]

武琳霞, 丁小霞, 李培武, 等. 我国油菜镉污染及菜籽油质量安全性评估[J]. 农产品质量与安全, 2016, (1): 41-46. doi: 10.3969/j.issn.1674-8255.2016.01.010

Wu L X, Ding X X, Li P W, et al. Cadmium pollution of rapeseed and quality and safety evaluation of rapeseed oil in China[J].Quality and Safety of Agro-Products, 2016, (1): 41-46. doi: 10.3969/j.issn.1674-8255.2016.01.010

[9]

Huang S, Jiang S. Determination of Zn, Cd and Pb in vegetable oil by electrothermal vaporization inductively coupled plasma mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2001, 16(6): 664-668. doi: 10.1039/b101387o

[10]

Medek P, Pavlí ková J, Zbíral J, et al. Inductively coupled plasma mass spectrometric (ICP/MS) determination of thallium in soils and winter rapeseeds[J].International Journal of Environmental Analytical Chemistry, 2001, 81(3): 207-219. doi: 10.1080/03067310108044343

[11]

Llorent-Martínez E J, Ortega-Barrales P M, Fernández-de Córdova L, et al. Investigation by ICP-MS of trace element levels in vegetable edible oils produced in Spain[J].Food Chemistry, 2011, 127(3): 1257-1262. doi: 10.1016/j.foodchem.2011.01.064

[12]

张飞鸽, 元艳, 周顺超, 等. 微波消解-电感耦合等离子体质谱法测定油菜籽中的六种重金属含量[J]. 资源环境与工程, 2017, 31(6): 811-814.

Zhang F G, Yuan Y, Zhou S C, et al. Determination of six heavy metals in rapeseed by microwave digestion-inductively coupled plasma mass spectrometry[J]. Resources, Environment and Engineering, 2017, 31(6): 811-814.

[13]

乔磊, 叶永盛, 李鹰, 等. 固体直接进样-电热蒸发电感耦合等离子体质谱联用分析土壤中的重金属元素[J]. 岩矿测试, 2020, 39(1): 99-107.

Qiao L, Ye Y S, Li Y, et al. Analysis of heavy metals in soil by solid direct injection electrothermal evaporation inductively coupled plasma mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 99-107.

[14]

García-Mesa J C, Montoro-Leal P, Rodríguez-Moreno R M A, et al. Direct solid sampling for speciation of Zn2+ and ZnO nanoparticles in cosmetics by graphite furnace atomic absorption spectrometry[J].Talanta, 2021, 223(1): 121795.

[15]

Schreiter N, Wiche O, Aubel I, et al. Determination of germanium in plant and soil samples using high-resolution continuum source graphite furnace atomic absorption spectrometry with solid sampling[J].Journal of Geochemical Exploration, 2021, 220: 106674. doi: 10.1016/j.gexplo.2020.106674

[16]

林建奇. 双通道-原子荧光光谱和固体进样-冷原子吸收光谱测定岩石中痕量汞[J]. 岩矿测试, 2021, 40(4): 512-521.

Lin J Q. Determination of trace mercury in rocks by dual channel atomic fluorescence spectrometry and solid injection cold atomic absorption spectrometry[J]. Rock and Mineral Analysis, 2021, 40(4): 512-521.

[17]

高捷, 盛成, 朱月琴, 等. 悬浮液进样-全反射X射线荧光光谱法测定食品中的多无机元素[J]. 光谱学与光谱分析, 2020, 40(3): 945-949.

Gao J, Sheng C, Zhu Y Q, et al. Determination of polyinorganic elements in food by suspension injection-total reflection X-ray fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 945-949.

[18]

王谦, 郑琳, 任飞, 等. 悬浮液进样-全反射X射线荧光光谱法测定膏霜类化妆品中的铅、砷和汞[J]. 分析化学, 2018, 46(4): 517-523.

Wang Q, Zheng L, Ren F, et al. Determination of lead, arsenic and mercury in cream cosmetics by suspension injection-total reflection X-ray fluorescence spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(4): 517-523.

[19]

Harrington J M, Haines L G, Essader A S, et al. Quan-titation of total vanadium in rodent plasma and urine by inductively coupled plasma-mass spectrometry (ICP-MS)[J].Analytical Letters, 2021, 54(17): 2777-2788. doi: 10.1080/00032719.2021.1890107

[20]

Liu T, Bolea-Fernandez E, Mangodt C, et al. Single-event tandem ICP-mass spectrometry for the quantification of chemotherapeutic drug-derived Pt and endogenous elements in individual human cells[J].Analytica Chimica Acta, 2021, 1177: 338797. doi: 10.1016/j.aca.2021.338797

[21]

王佳翰, 李正鹤, 杨峰, 等. 偏硼酸锂碱熔-电感耦合等离子体质谱法同时测定海洋沉积物中48种元素[J]. 岩矿测试, 2021, 40(2): 306-315.

Wang J H, Li Z H, Yang F, et al. Lithium metaborate alkali melting-inductively coupled plasma mass spectrometry for simultaneous determination of 48 elements in marine sediments[J]. Rock and Mineral Analysis, 2021, 40(2): 306-315.

[22]

Markovic S, Ursic K, Cemazar M, et al. High spatial resolution imaging of cisplatin and Texas Red cisplatin in tumour spheroids using laser ablation isotope dilution inductively coupled plasma mass spectrometry and confocal fluorescence microscopy[J].Analytica Chimica Acta, 2021, 1162: 338424. doi: 10.1016/j.aca.2021.338424

[23]

Ansberque C, Chew D M, Drost K, et al. Apatite fission-track dating by LA-Q-ICP-MS imaging[J].Chemical Geology, 2021, 560: 1-13.

[24]

Kovacs R, Schlosser S, Staub S P, et al. Characterization of calibration materials for trace element analysis and fingerprint studies of gold using LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2009, 24(4): 476-483. doi: 10.1039/b819685k

[25]

Qiao L, Wu Z W, Li Y, et al. A novel calibration strategy for the analysis of airborne particulate matter by direct solid sampling ETV-ICP-MS[J].Microchemical Journal, 2020, 159: 105474. doi: 10.1016/j.microc.2020.105474

[26]

Scheffler G L, Makonnen Y, Pozebon D, et al. Solid sampling analysis of a Mg alloy using electrothermal vaporization inductively coupled plasma optical emission spectrometry[J].Journal of Analytical Atomic Spectrometry, 2017, 32(10): 2041-2045. doi: 10.1039/C7JA00203C

[27]

Au M, Karbach H, Bell A M, et al. Determination of metal uptake in single organisms, Corophium volutator, via complementary electrothermal vaporization/inductively coupled plasma mass spectrometry and laser ablation/inductively coupled plasma mass spectrometry[J].Rapid Communications in Mass Spectrometry, 2021, 35(2): 1-10.

[28]

Tseng Y J, Tsai Y D, Jiang S J, et al. Electrothermal vapor-ization dynamic reaction cell inductively coupled plasma mass spectrometry for the determination of Fe, Co, Ni, Cu, and Zn in biological samples[J].Analytical & Bioanalytical Chemistry, 2007, 387(8): 2849-2855.

[29]

Masson P, Dauthieu M, Trolard F, et al. Application of direct solid analysis of plant samples by electrothermal vaporization-inductively coupled plasma atomic emission spectrometry: Determination of Cd and Si for environmental purposes[J].Spectrochimica Acta Part B: Atomic Spectroscopy, 2007, 62(3): 224-230. doi: 10.1016/j.sab.2007.01.004

[30]

Liao H C, Jiang S J. EDTA as the modifier for the determination of Cd, Hg and Pb in fish by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 1999, 14(10): 1583-1588. doi: 10.1039/a905328j

[31]

Li P C, Jiang S J. Electrothermal vaporization inductively coupled plasma-mass spectrometry for the determin-ation of Cr, Cu, Cd, Hg and Pb in rice flour[J].Analytica Chimica Acta, 2003, 495(1-2): 143-150. doi: 10.1016/S0003-2670(03)00874-2

[32]

Borges D, Welz B, Curtius A J, et al. Determination of As, Cd, Pb and Tl in coal by electrothermal vaporization inductively coupled plasma mass spectrometry using slurry sampling and external calibration against aqueous standards[J].Microchimica Acta, 2007, 159(1-2): 19-26. doi: 10.1007/s00604-006-0730-7

[33]

Zhang Y F, Jiang Z C, He M, et al. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling[J].Environmental Pollution, 2007, 148(2): 459-467. doi: 10.1016/j.envpol.2006.12.004

[34]

Sun Y, Ko C J. Combining electrothermal vaporization inductively coupled plasma mass spectrometry with in situ TMAH thermochemolysis for the direct determination of trace impurities in a polymer-based photoresist[J].Journal of Analytical Atomic Spectrometry, 2006, 21(3): 311-316. doi: 10.1039/b512233c

[35]

Hsu W H, Jiang S J, Sahayam A C, et al. Determination of Cu, As, Hg and Pb in vegetable oils by electrothermal vaporization inductively coupled plasma mass spectrometry with palladium nanoparticles as modifier[J].Talanta, 2013, 117: 268-272. doi: 10.1016/j.talanta.2013.09.013

相似文献(共20条)

[1]

李刚, 曹小燕. 电感耦合等离子体质谱法测定地质样品中锗和镉的干扰及校正. 岩矿测试, 2008, 27(3): 197-200.

[2]

魏灵巧, 付胜波, 罗磊, 黄小华, 龙安应, 帅琴. 电感耦合等离子体发射光谱法多向观测同时测定锑矿石中锑砷铜铅锌. 岩矿测试, 2012, 31(6): 967-970.

[3]

陈贺海, 鲍惠君, 付冉冉, 应海松, 芦春梅, 金献忠, 肖达辉. 微波消解-电感耦合等离子体质谱法测定铁矿石中铬砷镉汞铅. 岩矿测试, 2012, 31(2): 234-240.

[4]

贺攀红, 吴领军, 杨珍, 张伟, 荣耀, 龚治湘. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中痕量砷锑铋汞. 岩矿测试, 2013, 32(2): 240-243.

[5]

吴峥, 熊英, 王龙山. 自制氢化物发生系统与电感耦合等离子体发射光谱法联用测定土壤和水系沉积物中的砷锑铋. 岩矿测试, 2015, 34(5): 533-538. doi: 10.15898/j.cnki.11-2131/td.2015.05.006

[6]

胡德新, 武素茹, 刘跃勇, 王虹, 王向东, 李权斌, 谷松海. 改进BCR法-电感耦合等离子体发射光谱法测定矿产品堆场土壤中镉砷铅的化学形态. 岩矿测试, 2014, 33(3): 374-378.

[7]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[8]

尹周澜, 王薇惟, 覃祚明, 黄旭. 电感耦合等离子体质谱法测定高纯铟中铁. 岩矿测试, 2008, 27(3): 193-196.

[9]

江祖成, 胡斌. 电热蒸发—电感耦合等离子体原子发射光谱及其在痕量稀土分析中的应用. 岩矿测试, 2000, (2): 122-128.

[10]

胡斌, 江祖成. 难熔元素铌钽铀锆在电热蒸发—等离子体发射光谱中氟化蒸发行为研究. 岩矿测试, 1993, (3): 183-188.

[11]

杨红霞, 何红蓼, 李冰, 倪哲明. 环境样品中痕量元素的化学形态分析Ⅱ.砷汞镉锡铅硒铬的形态分析. 岩矿测试, 2005, (2): 118-128.

[12]

李冰, 王小如. 乙醇增强氢化物发生电感耦合等离子体质谱法测定砷锑铋硒和碲的研究. 岩矿测试, 1999, (2): 101-110.

[13]

何中发, 邵超英, 温晓华, 张琢. 悬浮液进样-氢化物发生原子荧光光谱法测定土壤中痕量砷锑硒. 岩矿测试, 2007, 26(6): 460-464.

[14]

徐爱琴. 原子荧光光谱法测砷锑铋汞中一些问题及解决方法. 岩矿测试, 2001, (1): 79-80.

[15]

吴健玲, 刘亚轩, 张勤. 电感耦合等离子体质谱法直接同时测定地球化学样品中镓铟铊. 岩矿测试, 2003, (1): 21-27.

[16]

徐崇颖, 付爱瑞, 肖凡, 邢刚. 碘化钾-甲基异丁基甲酮萃取-火焰原子吸收分光光度法连续测定地球化学样品中痕量银镉铊. 岩矿测试, 2007, 26(1): 67-70.

[17]

李冰, , 史世云. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究:Ⅱ.土壤及沉积物标准物质分析. 岩矿测试, 2001, (4): 241-246.

[18]

沈宇, 张尼, 高小红, 李皓, 马怡飞. 微波消解电感耦合等离子体质谱法测定地球化学样品中钒铬镍锗砷. 岩矿测试, 2014, (5): 649-654.

[19]

高孝礼, 汤志云, 张培新, 肖灵, 李方实. 多目标生态地球化学调查土壤样品中砷硒锑有效态分析方法的商榷. 岩矿测试, 2004, (3): 173-178.

[20]

吕彩芬, 马新荣, 温宏利, 史世云, 李冰, 何红蓼. 电感耦合等离子体质谱法同时测定地质样品中痕量碘溴硒砷的研究Ⅰ.不同介质及不同阴离子形态对测定信号的影响. 岩矿测试, 2001, (3): 161-166.

计量
  • PDF下载量(5)
  • 文章访问量(102)
  • HTML全文浏览量(18)
  • 被引次数(0)
目录

Figures And Tables

悬乳体进样-电感耦合等离子体质谱法测定油菜籽中的毒性低温元素砷锑镉铊

董淑霞, 谢宁宁, 韩继庆, 熊俊彪, 吴少尉