【引用本文】 李丽君, 王海娇, 马健生, . 下辽河平原地下水中挥发性有机物的污染特征及健康风险评价[J]. 岩矿测试, 2021, 40(6): 930-943. doi: 10.15898/j.cnki.11-2131/td.202108200105
LI Li-jun, WANG Hai-jiao, MA Jian-sheng. Pollution Characteristics and Health Risk Assessment of Volatile Organic Compounds in Groundwater in the Lower Liaohe River Plain[J]. Rock and Mineral Analysis, 2021, 40(6): 930-943. doi: 10.15898/j.cnki.11-2131/td.202108200105

下辽河平原地下水中挥发性有机物的污染特征及健康风险评价

1. 

中国地质调查局沈阳地质调查中心, 辽宁 沈阳 110034

2. 

自然资源部黑土地演化与生态效应重点实验室, 辽宁 沈阳 110034

收稿日期: 2021-08-20  修回日期: 2021-09-04  接受日期: 2021-09-21

基金项目: 中国地质调查局地质调查项目"兴凯湖平原及松辽平原西部土地质量地球化学调查"(DD20190520)

作者简介: 李丽君, 硕士, 高级工程师, 从事土壤、岩矿及地质矿产样品分析方法研究。E-mail: 475876904@qq.com

通信作者: 马健生, 硕士, 高级工程师, 从事环境样品及地质矿产分析方法研究。E-mail: 275470740@qq.com

Pollution Characteristics and Health Risk Assessment of Volatile Organic Compounds in Groundwater in the Lower Liaohe River Plain

1. 

Shenyang Center of Geological Survey, China Geological Survey, Shenyang 110032, China

2. 

Key Laboratory for Evolution and Ecological Effect in Black Soil, Ministry of Natural Resources, Shenyang 110032, China

Corresponding author: MA Jian-sheng, 275470740@qq.com

Received Date: 2021-08-20
Revised Date: 2021-09-04
Accepted Date: 2021-09-21

摘要:挥发性有机物(VOCs)作为重要的化工原料、中间体和有机溶剂,随着人类工农业的发展,其对环境及人类健康的影响日益凸显。下辽河平原作为人口较密集、工业化程度较高的平原地区,地下水的污染随着人类活动不断加剧,对人体健康产生了潜在风险。为了研究下辽河平原地下水中VOCs的污染特征及对人体产生的健康风险,本文利用吹扫捕集-气相色谱-质谱法检测下辽河平原地下水样品中60种VOCs的含量及污染特征并分析其污染来源。通过经口饮用、洗浴呼吸吸入、洗浴皮肤接触三种VOCs的暴露途径计算污染物长期摄入量,采用CSOIL模型评价健康风险。结果表明:采集的24组地下水样品中有20个采样点检出VOCs,样品VOCs检出率为83.3%,在个别采样点萘、苯、1,2-二氯丙烷含量超过《地下水质量标准》(GB 14848—2017)Ⅲ类水的限值(100、10.0、5.0μg/L),工业源VOCs的排放是研究区地下水VOCs超标的主要来源。地下水样品中VOCs的总致癌风险指数在0~4.0×10-5之间,总非致癌风险指数在0~0.93之间,均低于US EPA推荐的健康风险评价标准;企业用地周边地下水中的健康风险指数高于农业用地地下水。本研究表明下辽河平原地下水中VOCs检出率相对较高,健康风险处于可接受水平,该结果可为地区地下水工业源VOCs污染监管和治理提供参考。

关键词: 下辽河平原, 地下水, 挥发性有机物, 气相色谱-质谱法, 健康风险评价

要点

(1) 采用吹扫捕集-气相色谱-质谱法测定了下辽河平原地下水中60种VOCs的含量。

(2) 地下水VOCs污染程度较轻,污染主要来源于工业源VOCs的排放。

(3) 地下水VOCs的总致癌风险及总非致癌风险指数偏高区域集中于染料、化工企业周边。

Pollution Characteristics and Health Risk Assessment of Volatile Organic Compounds in Groundwater in the Lower Liaohe River Plain

ABSTRACT

BACKGROUND:

As important industrial chemicals, intermediates and organic solvents, volatile organic compounds (VOCs) have increased the impact on the environment and human health with the development of human industry and agriculture. As a densely populated and highly industrialized plain area, the concentration of VOCs in groundwater of the Lower Liaohe River Plain poses potential risks to human health as human activities constantly intensify.

OBJECTIVES:

To study the pollution characteristics of VOCs and the health risks in groundwater in the Lower Liaohe Plain.

METHODS:

The concentration of 60 VOCs in groundwater samples was determined by purge and trap-gas chromatography/mass spectrometry (PT-GC/MS) to investigate the VOCs pollution sources. By calculating the long-term intake of pollutants with three VOCs exposure routes via oral drinking, bath respiratory inhalation, and bath skin exposure, the health risk was assessed by the CSOIL health risk assessment model.

RESULTS:

The VOCs in 20 sampling sites were detectable from the whole 24 sampling sites, with a detection rate of 83.3%. The content of naphthalene, benzene, 1, 2-dichloropropane in some sites exceeded the limits of the standard for groundwater quality (GB 14848-2017, limit values of 100, 10.0, 5.0μg/L). The industrial sources were the main sources of groundwater VOCs in the study area. The total carcinogenic risk index of VOCs in groundwater samples was 0-4.0×10-5, and the total non-carcinogenic risk index was 0-0.93. Both were lower than the standard recommended by US EPA (United States Environmental Protection Agency). The health risk index in groundwater around enterprise land was higher than in the groundwater of agricultural land.

CONCLUSIONS:

The study shows that the VOCs detection rate is higher in groundwater in the lower Liaohe River Plain, however, the health risk is within acceptable levels for people. It provides reference for the control of VOCs pollution from regional groundwater industrial sources.

KEY WORDS: the Lower Liaohe River Plain, groundwater, volatile organic compounds, gas chromatography-mass spectrometry, health risk assessment

HIGHLIGHTS

(1) The content of 60 volatile organic compounds (VOCs) in the Lower Liaohe Plain was measured by purge and trap-gas chromatography/mass spectrometry (PT-GC/MS).

(2) Groundwater VOCs had a low pollution degree, and the pollution mainly came from the industrial source of VOCs emissions.

(3) The areas with high total carcinogenic risk and total non-carcinogenic risk index of groundwater VOCs were concentrated around dyes and chemical enterprises.

本文参考文献

[1]

程云轩, 高秋生, 李捷, 等. 淮河流域南四湖可挥发性有机物污染特征及风险评价[J]. 环境科学, 2021, 42(4): 1820-1829.

Cheng Y X, Gao Q S, Li J, et al. Characteristics of volatile organic compounds pollution and risk assessment of Nansi Lake in Huaihe River Basin[J]. Environmental Science, 2021, 42(4): 1820-1829.

[2]

朱帅, 沈亚婷, 贾静, 等. 环境介质中典型新型有机污染物分析技术研究进展[J]. 岩矿测试, 2018, 37(5): 586-606.

Zhu S, Shen Y T, Jia J, et al. Review on the analytical methods of typical emerging organic pollutants in the environment[J]. Rock and Mineral Analysis, 2018, 37(5): 586-606.

[3]

Shi P, Zhou S C, Xiao H X, et al. Toxicological and chemical insights into representative source and drinking water in eastern China[J].Environmental Pollution, 2018, 233: 35-44. doi: 10.1016/j.envpol.2017.10.033

[4]

Zhao Q, Wang Q, Li Y J, et al. Influence of volatile organic compounds (VOCs) on pulmonary surfactant monolayers at air-water interface: Implication for the pulmonary health[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 562: 402-408.

[5]

Cao F M, Qin P, Lu S Y, et al. Measurement of volatile organic compounds and associated risk assessments through ingestion and dermal routes in Dongjiang Lake, China[J].Ecotoxicology and Environmental Safety, 2018, 165: 645-653. doi: 10.1016/j.ecoenv.2018.08.108

[6]

张栋, 于世杰, 王楠, 等. 郑州市冬季VOCs污染特征、来源及健康风险评估[J]. 环境科学学报, 2020, 40(8): 2935-2943.

Zhang D, Yu S J, Wang N, et al. Characteristics, sources and health risk assessment of ambient VOCs in winter of Zhengzhou[J]. Acta Scientiae Circumstantiae, 2020, 40(8): 2935-2943.

[7]

Yu S, Lee P, Yun S, et al. Comparison of volatile organic compounds in stormwater and groundwater in Seoul Metropolitan City, South Korea[J].Environmental Earth Sciences, 2017, 76: 338. doi: 10.1007/s12665-017-6666-x

[8]

杜士林. 沙颍河流域水环境优控污染物筛选及潜在生态风险评价研究[D]. 桂林: 桂林理工大学, 2020.

Du S L. The research on screening of priority pollutants in the water environment and potential ecological risk assessment in Shaying River Basin[D]. Guilin: Guilin University of Technology, 2020.

[9]

郭永丽, 全洗强, 吴庆, 等. 北方喀斯特地区地下水VOCs污染特征及健康风险——以山东省淄博市临淄区为例[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 102-113.

Guo Y L, Quan X Q, Wu Q, et al. Pollution characteristics and health risk assessment of volatile organic compounds of typical karst groundwater source in North China[J]. Journal of Guangxi Normal University (Natural Science Edition), 2020, 38(6): 102-113.

[10]

张坤锋, 赵少延, 孙兴滨, 等. 海拉尔河及傍河地下水饮用水源中挥发性有机物的污染特征与风险[J]. 河南师范大学学报(自然科学版), 2021, 49(5): 74-82.

Zhang K F, Zhao S Y, Sun X B, et al. Pollution characteristics and risks of volatile organic compounds in drinking water sources of Hailar River and nearby rivers groundwater[J]. Journal of Henan Normal University (Natural Science Edition), 2021, 49(5): 74-82.

[11]

Chen X C, Luo Q, Wang D H, et al. Simultaneous assessments of occurrence, ecological, human health, and organoleptic hazards for 77 VOCs in typical drinking water sources from 5 major river basins, China[J].Environmental Pollution, 2015, 206: 64-72. doi: 10.1016/j.envpol.2015.06.027

[12]

李沫蕊, 王亚飞, 王金生, 等. 下辽河平原区域地下水典型污染物的筛选[J]. 中国环境监测, 2015, 31(3): 62-69.

Li M R, Wang Y F, Wang J S, et al. Application of modified potential damage index method to screening of the typical pollutants in groundwater of the Liao River Basin[J]. Environmental Monitoring in China, 2015, 31(3): 62-69.

[13]

赵岩. 下辽河平原区辽阳-鞍山地段浅层地下水污染评价[J]. 地质与资源, 2015, 24(4): 388-393. doi: 10.3969/j.issn.1671-1947.2015.04.018

Zhao Y. Evaluation of shallow groundwater pollution in Liaoyang-Anshan section of Lower Liaohe River Plain[J].Geology and Resources, 2015, 24(4): 388-393. doi: 10.3969/j.issn.1671-1947.2015.04.018

[14]

奚旭, 张新长, 孙才志, 等. 不确定性条件下的下辽河平原地下水脆弱性评价及空间分布软区划[J]. 地理科学, 2017, 37(9): 1439-1448.

Xi X, Zhang X C, Sun C Z, et al. Assessment and soft zoning of groundwater vulnerability in the lower reach of the Liaohe River Plain under uncertainty condition[J]. Scientia Geographica Sinica, 2017, 37(9): 1439-1448.

[15]

陈相涛. 下辽河平原浅层地下水污染风险评价及空间热点分析[D]. 大连: 辽宁师范大学, 2016.

Chen X T. Evaluation and hotspots analysis of shallow groundwater contamination risk in the lower reach of the Liaohe River Plain[D]. Dalian: Liaoning Normal University, 2016.

[16]

李仙波, 左锐, 滕彦国, 等. 基于RRM模型的化工企业对下辽河平原区域地下水环境风险评价[J]. 北京师范大学学报(自然科学版), 2016, 52(5): 580-585.

Li X B, Zuo R, Teng Y G, et al. A risk assessment model of regional groundwater risk due to chemical enterprises in the Lower Liaohe River Plain[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(5): 580-585.

[17]

罗庆. 细河沿岸地下水中特征有机污染物健康风险评价[D]. 沈阳: 沈阳大学, 2011.

Luo Q. Health risk assessment of the typical organic pollutants in the groundwater of Xihe River area[D]. Shenyang: Shenyang University, 2011.

[18]

鲁统民. 淄博市大武水源地地下水有机污染特征及健康风险评价[D]. 青岛: 山东科技大学, 2020.

Lu T M. Characteristics of organic pollution and health risk assessment of Dawu water source area in Zibo City[D]. Qingdao: Shandong University of Science and Technology, 2020.

[19]

冯丽丽, 胡晓芳. 顶空固相微萃取/气相色谱-三重四极杆串联质谱法测定地表水与饮用水中的挥发性有机物[J]. 分析测试学报, 2019, 38(11): 1294-1300. doi: 10.3969/j.issn.1004-4957.2019.11.002

Feng L L, Hu X F. Determination ofvolatile organic compounds in surface water and drinking water by gas chromatography-triple quadrupole tandem mass spectrometry with head space-solid phase micro-extraction[J].Journal of Instrumental Analysis, 2019, 38(11): 1294-1300. doi: 10.3969/j.issn.1004-4957.2019.11.002

[20]

姜洋, 房丽萍, 杨刚, 等. 水体中挥发性有机物分析方法研究进展[J]. 环境化学, 2015, 34(9): 1611-1618.

Jiang Y, Fang L P, Yang G, et al. Analytical methods of volatile organic compounds in water samples[J]. Environmental Chemistry, 2015, 34(9): 1611-1618.

[21]

张春艳, 高柏, 郭亚丹, 等. 鄱阳湖区域地下水有机污染物特征与风险评价[J]. 生态毒理学报, 2016, 11(2): 524-530.

Zhang C Y, Gao B, Guo Y D, et al. Pollution characteristics and risk assessment of organic pollutants in groundwater of Poyang Lake[J]. Asian Journal of Ecotoxicology, 2016, 11(2): 524-530.

[22]

昌盛, 赵兴茹, 刘琰, 等. 滹沱河冲洪积扇地下水中挥发性有机物的分布特征与健康风险[J]. 环境科学研究, 2016, 29(6): 854-862.

Chang S, Zhao X R, Liu Y, et al. Distribution characteristics and health risk assessment of volatile organic compounds in groundwater of Hutuo River Pluvial Fan[J]. Research of Environmental Sciences, 2016, 29(6): 854-862.

[23]

刘锐源, 钟美芳, 赵晓雅, 等. 2011-2019年中国工业源挥发性有机物排放特征[J]. 环境科学, 2021, . doi: 10.13227/j.hjkx.202102112

Liu R Y, Zhong M F, Zhao X Y, et al. Characteristics of industrial volatile organic compounds (VOCs) emission in China from 201l to 2019[J].Environmental Science, 2021, . doi: 10.13227/j.hjkx.202102112

[24]

Siddiqi S, Mamun A, Baawain M, et al. Groundwater contamination in the Gulf Cooperation Council (GCC)countries: A review[J].Environmental Science and Pollution Research, 2021, 28: 21023-21044. doi: 10.1007/s11356-021-13111-5

[25]

杨帆, 闫雨龙, 戈云飞, 等. 晋城市冬季环境空气中挥发性有机物的污染特征及来源解析[J]. 环境科学, 2018, 39(9): 4042-4050.

Yang F, Yan Y L, Ge Y F, et al. Characteristics and source apportionment of ambient volatile organic compounds in winter in Jincheng[J]. Environmental Science, 2018, 39(9): 4042-4050.

[26]

徐蓉桢, 刘菲, 荆继红, 等. 典型浅层孔隙水和岩溶水中多环芳烃分布特征[J]. 岩矿测试, 2018, 37(4): 411-418.

Xu R Z, Liu F, Jing J H, et al. Distribution characteristics of polycyclic aromatic hydrocarbons in typical shallow pore water and karst water[J]. Rock and Mineral Analysis, 2018, 37(4): 411-418.

[27]

崔晓嫒. 长江中下游饮用水水源地中典型POPs的污染特征及风险分析[D]. 石家庄: 河北师范大学, 2020.

Cui X A. Pollution characteristics and risk assessment of typical POPs in drinking water sources in the middle and lower reaches of the Yangtze River[D]. Shijiazhuang: Hebei Normal University, 2020.

[28]

范晨子, 刘永兵, 赵文博, 等. 云南安宁水系沉积污染物分布特征与风险评价[J]. 岩矿测试, 2021, 40(4): 570-582.

Fan C Z, Liu Y B, Zhao W B, et al. Pollution distribution characteristics and ecological risk assessment of heavy metals and polycyclic aromatic hydrocarbons in the river sediments in Anning, Yunnan Province[J]. Rock and Mineral Analysis, 2021, 40(4): 570-582.

[29]

卢浩. 济南市东部城区地下水系统氯代烃污染预警研究[D]. 济南: 济南大学, 2019.

Lu H. Study on the early waring of groundwater chlorinated hydrocarbons pollution in the eastern area of Jinan[D]. Jinan: University of Jinan, 2019.

[30]

谢先军, 刘红杏, 高爽, 等. 典型纳污坑塘周边地下水污染来源识别及其健康风险评估[J]. 地质科技通报, 2020, 39(1): 34-42.

Xie X J, Liu H X, Gao S, et al. Source identification and health risk assessment of groundwater pollution in typical sewage pits and ponds[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 34-42.

[31]

张道来, 刘娜, 朱志刚, 等. 山东半岛典型海岸带多环芳烃分布特征、来源解析及风险评价[J]. 岩矿测试, 2016, 35(5): 521-529.

Zhang D L, Liu N, Zhu Z G, et al. Distribution, sources and risk assessment of polycyclic aromatic hydrocarbons in surface sediments from typical coast of Shandong Peninsula[J]. Rock and Mineral Analysis, 2016, 35(5): 521-529.

[32]

陈玺, 朱亮, 刘景涛, 等. 银川平原饮用地下水健康风险评价及风险控制研究[J]. 安徽农业科学, 2019, 47(18): 78-84. doi: 10.3969/j.issn.0517-6611.2019.18.019

Chen X, Zhu L, Liu J T, et al. Study on health risk assessment and risk control of drinking groundwater in Yinchuan Plain[J].Journal of Anhui Agricultural Sciences, 2019, 47(18): 78-84. doi: 10.3969/j.issn.0517-6611.2019.18.019

[33]

饶志, 储小东, 颜春, 等. 鄱阳湖平原浅层地下水有机污染物含量特征与健康风险评价[J]. 地球与环境, 2019, 47(5): 662-670.

Rao Z, Chu X D, Yan C, et al. Characteristics and health risk assessment of organic pollutants in groundwater of the Poyang Lake Plain[J]. Earth and Environment, 2019, 47(5): 662-670.

[34]

刘姝媛, 王红旗. 某地下水源地有机污染健康风险评价[J]. 环境科学与技术, 2014, 37(2): 174-177.

Liu S Y, Wang H Q. Health risk assessment of organic pollution in a groundwater source[J]. Environmental Science & Technology, 2014, 37(2): 174-177.

[35]

赵庆令, 李清彩, 谢江坤, 等. 鲁中南地区双村岩溶水系统地下水中化学致癌物和非致癌物的健康风险评价[J]. 岩矿测试, 2016, 35(1): 90-97.

Zhao Q L, Li Q C, Xie J K, et al. Health risk assessment of carcinogenic and non-carcinogenic substances in underground water from the Shuangcun karst system of central-southern Shandong Province[J]. Rock and Mineral Analysis, 2016, 35(1): 90-97.

相似文献(共20条)

[1]

张静梅, 张培新, 高孝礼, 黄光明, 窦银萍. 电感耦合等离子体质谱法同时测定地下水中硼溴碘. 岩矿测试, 2008, 27(1): 25-28.

[2]

宋淑玲, 饶竹, 李松. 全国地下水调查中12种半挥发性必检组分的测定. 岩矿测试, 2008, 27(2): 91-94.

[3]

孙玮琳, 沈斌, 汪双清, 龚迎莉. 自然水体和土壤中氯代烃和芳香烃类化合物分析测试方法研究. 岩矿测试, 2008, 27(3): 174-178.

[4]

李义, 董建芳, 张宇. 地下水中挥发性有机物的吹扫捕集-气相色谱-质谱法测定. 岩矿测试, 2010, 29(5): 513-517.

[5]

冯丽, 李诚, 张彦, 张喜友. 吹扫捕集/气相色谱-质谱法测定地下水中30种挥发性有机物. 岩矿测试, 2012, 31(6): 1037-1042.

[6]

刘美美, 张小辉, 马娅妮, 李雪莹, 陶秋丽. 吹扫捕集-气相色谱-质谱联用法测定地下水中27种挥发性有机物. 岩矿测试, 2012, 31(3): 495-500.

[7]

赵庆令, 李清彩, 谢江坤, 史启朋, 陈丽娇. 鲁中南地区双村岩溶水系统地下水中化学致癌物和非致癌物的健康风险评价. 岩矿测试, 2016, 35(1): 90-97. doi: 10.15898/j.cnki.11-2131/td.2016.01.015

[8]

李丽君, 汪寅夫, 王娜, 王海娇. 吹扫捕集-气相色谱/质谱法测定地下水中的挥发性有机物. 岩矿测试, 2010, 29(5): 547-551.

[9]

陶文靖, 黄勤, 李胜生. 顶空进样-气相色谱-质谱法测定地下水中25种挥发性有机污染物. 岩矿测试, 2010, 29(5): 543-546.

[10]

赖永忠, 季彦鋆. 气相动态顶空进样-气相色谱-质谱法同时分析饮用水源水中57种挥发性有机物. 岩矿测试, 2012, 31(5): 877-883.

[11]

贾静, 杨志鹏. 吹扫捕集-气相色谱/质谱法测定地下水中1,4-二噁烷. 岩矿测试, 2014, 33(4): 556-560.

[12]

李松, 饶竹, 宋淑玲, 田芹, 赵威. 气相色谱-质谱在地下水检测过程中的重要性. 岩矿测试, 2010, 29(5): 518-522.

[13]

刘玉龙, 夏凡, 张洪志. 挥发性有机污染物标准物质使用的短期稳定性评价. 岩矿测试, 2012, 31(4): 647-652.

[14]

高冉, 饶竹, 郭晓辰. 地下水中91种农药多残留气相色谱-质谱分析方法研究及应用. 岩矿测试, 2021, 40(6): 973-986. doi: 10.15898/j.cnki.11-2131/td.202011170148

[15]

张永涛, 张莉, 左海英, 桂建业, 李晓亚, 李桂香. 重氮甲烷衍生气相色谱-质谱法检测地下水中17种酸性除草剂. 岩矿测试, 2010, 29(4): 345-349.

[16]

郭晓辰, 饶竹, 高冉. 气相色谱法测定地下水中拟除虫菊酯有机氯百菌清等24种农药残留. 岩矿测试, 2014, 33(3): 406-412.

[17]

余蕾, 张小毅. 气相色谱-三重四极杆质谱法测定地下水中44种有机物污染物. 岩矿测试, 2021, 40(3): 365-374. doi: 10.15898/j.cnki.11-2131/td.202008310120

[18]

孟洁, 王静, 肖咸德, 张妍, 翟增秀, 李伟芳. 有机磷农药污染地块异味污染调查与健康风险评估. 岩矿测试, 2021, 40(6): 907-918. doi: 10.15898/j.cnki.11-2131/td.202012140164

[19]

马晗宇, 刘菲, 刘玉龙. 气相色谱法测定地下水中有机氯农药和多氯联苯. 岩矿测试, 2010, 29(5): 527-530.

[20]

王敏捷, 周姣花, 曹立峰. 气相色谱法测定地下水中15种有机氯农药. 岩矿测试, 2010, 29(5): 628-630.

计量
  • PDF下载量(8)
  • 文章访问量(439)
  • HTML全文浏览量(172)
  • 被引次数(0)
目录

Figures And Tables

下辽河平原地下水中挥发性有机物的污染特征及健康风险评价

李丽君, 王海娇, 马健生